ﻻ يوجد ملخص باللغة العربية
We propose a mathematical model for collective sensing in a population growing in a stochastically varying environment. In the population, individuals use an information channel for sensing the environment, and two channels for signal production and comprehension to communicate among themselves. We show that existence of such system has a positive effect on population growth, hence can have a positive evolutionary effect. We show that the gain in growth due to the collective sensing is related to information theoretic entities, which can be considered as the information content of this system from the environment. We further show that heterogeneity in communication resulted from network or spatial structure increases growth. We compute the growth rate of a population residing on a lattice and show that growth rate near the maximum noise level in observation or communication, increases exponentially as noise decreases. This exponential effect makes the emergence of collective observation an easy outcome in an evolutionary process. Furthermore, we are able to quantify interesting effects such as accelerated growth, and simplification of decision making due to information amplification by communication. Finally, we show that an amount of noise in representation formation has more disadvantageous effect compared to the same noise in signal production.
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this u
How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian dynamics of models of the Ising type to describe populations of cooperating and defecting players to show that the equilibrium fraction of cooperato
We study the stochastic dynamics of evolutionary games, and focus on the so-called `stochastic slowdown effect, previously observed in (Altrock et. al, 2010) for simple evolutionary dynamics. Slowdown here refers to the fact that a beneficial mutatio
Darwinian evolution can be modeled in general terms as a flow in the space of fitness (i.e. reproductive rate) distributions. In the diffusion approximation, Tsimring et al. have showed that this flow admits fitness wave solutions: Gaussian-shape fit
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of potential function for discrete-space stochastic systems. It is based on a correspondence between