ﻻ يوجد ملخص باللغة العربية
In the present work we explore a pre-stretched oscillator chain where the nodes interact via a pairwise Lennard-Jones potential. In addition to a homogeneous solution, we identify solutions with one or more (so-called) `breaks, i.e., jumps. As a function of the canonical parameter of the system, namely the precompression strain $d$, we find that the most fundamental one break solution changes stability when the monotonicity of the Hamiltonian changes with $d$. We provide a proof for this (motivated by numerical computations) observation. This critical point separates stable and unstable segments of the one break branch of solutions. We find similar branches for 2 through 5 break branches of solutions. Each of these higher `excited state solutions possesses an additional unstable pair of eigenvalues. We thus conjecture that $k$ break solutions will possess at least $k-1$ (and at most $k$) pairs of unstable eigenvalues. Our stability analysis is corroborated by direct numerical computations of the evolutionary dynamics.
A nonlinear chain with six-order polynomial on-site potential is used to analyze the evolution of the total to kinetic energy ratio during development of modulational instability of extended nonlinear vibrational modes. For the on-site potential of h
We study the nonlinear dynamics of a completely inhomogeneous DNA chain which is governed by a perturbed sine-Gordon equation. A multiple scale perturbation analysis provides perturbed kink-antikink solitons to represent open state configuration with
We study the escape of a chain of coupled units over the barrier of a metastable potential. It is demonstrated that a very weak external driving field with suitably chosen frequency suffices to accomplish speedy escape. The latter requires the passag
We study ``nanoptera, which are non-localized solitary waves with exponentially small but non-decaying oscillations, in two singularly-perturbed Hertzian chains with precompression. These two systems are woodpile chains (which we model as systems of
The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to specific heat), stress (related to thermal expansio