ترغب بنشر مسار تعليمي؟ اضغط هنا

Convective Excitation of Inertial Modes in Binary Neutron Star Mergers

96   0   0.0 ( 0 )
 نشر من قبل Roberto De Pietri
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first very long-term simulations (extending up to ~140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants



قيم البحث

اقرأ أيضاً

We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist ic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy.
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes $sim 0.1$. They start at a gravitational-wave frequency of $sim392$~Hz and cover more than $1$ precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasi-local spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from a nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
We construct new, multivariate empirical relations for measuring neutron star radii and tidal deformabilities from the dominant gravitational wave frequency in the post-merger phase of binary neutron star mergers. The relations determine neutron star radii and tidal deformabilities for specific neutron star masses with consistent accuracy and depend only on two observables: the post-merger peak frequency $f_{rm peak}$ and the chirp mass $M_{rm chirp}$. The former could be measured with good accuracy from gravitational waves emitted in the post-merger phase using next-generation detectors, whereas the latter is already obtained with good accuracy from the inspiral phase with present-day detectors. Our main data set consists of a gravitational wave catalogue obtained with CFC/SPH simulations. We also extract the $f_{rm peak}$ frequency from the publicly available CoRe data set, obtained through grid-based GRHD simulations and find good agreement between the extracted frequencies of the two data sets. As a result, we can construct empirical relations for the combined data sets. Furthermore, we investigate empirical relations for two secondary peaks, $f_{2-0}$ and $f_{rm spiral}$, and show that these relations are distinct in the whole parameter space, in agreement with a previously introduced spectral classification scheme. Finally, we show that the spectral classification scheme can be reproduced using machine-learning techniques.
The recent detection of gravitational waves and electromagnetic counterparts emitted during and after the collision of two neutron stars marks a breakthrough in the field of multi-messenger astronomy. Numerical relativity simulations are the only too l to describe the binarys merger dynamics in the regime when speeds are largest and gravity is strongest. In this work we report state-of-the-art binary neutron star simulations for irrotational (non-spinning) and spinning configurations. The main use of these simulations is to model the gravitational-wave signal. Key numerical requirements are the understanding of the convergence properties of the numerical data and a detailed error budget. The simulations have been performed on different HPC clusters, they use multiple grid resolutions, and are based on eccentricity reduced quasi-circular initial data. We obtain convergent waveforms with phase errors of 0.5-1.5 rad accumulated over approximately 12 orbits to merger. The waveforms have been used for the construction of a phenomenological waveform model which has been applied for the analysis of the recent binary neutron star detection. Additionally, we show that the data can also be used to test other state-of-the-art semi-analytical waveform models.
We analyze the properties of the gravitational wave signal emitted after the merger of a binary neutron star system when the remnant survives for more than a 80 ms (and up to 140ms). We employ four different piecewise polytropic equations of state su pplemented by an ideal fluid thermal component. We find that the post-merger phase can be subdivided into three phases: an early post-merger phase (where the quadrupole mode and a few subdominant features are active), the intermediate post-merger phase (where only the quadrupole mode is active) and the late post-merger phase (where convective instabilities trigger inertial modes). The inertial modes have frequencies somewhat smaller than the quadrupole modes. In one model, we find an interesting association of a corotation of the quadrupole mode in parts of the star with a revival of its amplitude. The gravitational wave emission of inertial modes in the late post-merger phase is concentrated in a narrow frequency region and is potentially detectable by the planned third-generation detectors. This allows for the possibility of probing not only the cold part of the equation of state, but also its dependence on finite temperature. In view of these results, it will be important to investigate the impact of various type of viscosities on the potential excitation of inertial modes in binary neutron star merger remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا