ﻻ يوجد ملخص باللغة العربية
Soon available multi petawatt ultra-high-intensity (UHI) lasers will allow us to probe high-amplitude electromagnetic fields interacting with either ultra-relativistic electron beams or hot plasmas in the so-called moderately quantum regime. The correct modelling of the back-reaction of high-energy photon emission on the radiating electron dynamics, a.k.a. radiation reaction, in this regime is a key point for UHI physics. This will lead to both validation of theoretical predictions on the photon spectrum emitted during the laser-particle interaction and to the generation of high energy photon sources. In this paper we analyse in detail such emission using recently developed models to account for radiation reaction. We show how the predictions on the spectrum can be linked to a reduced description of the electron distribution function in terms of the first energy moments. The temporal evolution of the spectrum is discussed, as well as the parameters for which quantum effects induce hardening of the spectrum.
Radiation-reaction in the interaction of ultra-relativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the weakly quantum regime ($chi lesssim 1$, with $chi$ the electron quantum parameter). Thr
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its
We study electron acceleration in a plasma wakefield under the influence of the radiation-reaction force caused by the transverse betatron oscillations of the electron in the wakefield. Both the classical and the strong quantum-electrodynamic (QED) l
Collisions between high intensity laser pulses and energetic electron beams are now used to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of laser-wakefield-accelerated ele
This paper focuses on the analytic modelling of responses of cells in the body to ionizing radiation. The related mechanisms are consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered,