ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical evolution with rotating massive star yields: I. The solar neighbourhood and the s-process elements

84   0   0.0 ( 0 )
 نشر من قبل Nikos Prantzos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disk. We use a consistent chemical evolution model, metallicity dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity dependent function of the rotational velocities, constrained by observations as to obtain a primary-like $^{14}$N behavior at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the solar system isotopic composition can be reproduced to better than a factor of two for isotopes up to the Fe-peak, and at the 10% level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A< 100, is not necessary. We also reproduce the evolution of the heavy to light s-elements abundance ratio ([hs/ls]) - recently observed in unevolved thin disk stars - as a result of the contribution of rotating massive stars at sub-solar metallicities. We find that those stars produce primary F and dominate its solar abundance and we confirm their role in the observed primary behavior of N. In contrast, we show that their action is insufficient to explain the small observed values of C12/C13 in halo red giants, which is rather due to internal processes in those stars.



قيم البحث

اقرأ أيضاً

The decomposition of the Solar system abundances of heavy isotopes into their s- and r- components plays a key role in our understanding of the corresponding nuclear processes and the physics and evolution of their astrophysical sites. We present a n ew method for determining the s- and r- components of the Solar system abundances, fully consistent with our current understanding of stellar nucleosynthesis and galactic chemical evolution. The method is based on a study of the evolution of the solar neighborhood with a state-of-the-art 1-zone model, using recent yields of low and intermediate mass stars as well as of massive rotating stars. We compare our results with previous studies and we provide tables with the isotopic and elemental contributions of the s- and r-processes to the Solar system composition.
116 - L. Magrini , L. Spina , S. Randich 2018
Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations, giving important constraints to stellar and Galactic evolution. We aim to trace the abundance patterns and the time-evolution of five s-process elements in the first peak, Y and Zr, and in the second peak, Ba, La and Ce using the Gaia-ESO idr5 results. From the UVES spectra of cluster member stars, we determined the average composition of clusters with ages >0.1 Gyr. We derived statistical ages and distances of field stars, and we separated them in thin and thick disc populations. We studied the time evolution and dependence on metallicity of abundance ratios using open clusters and field stars. Using our large and homogeneous sample of open clusters, thin and thick disc stars, spanning an age range larger than 10 Gyr, we confirm an increase towards young ages of s-process abundances in the Solar neighbourhood. These trends are well defined for open clusters and stars located nearby the solar position and they may be explained by a late enrichment due to significant contribution to the production of these elements from long-living low-mass stars. At the same time, we found a strong dependence of the s-process abundance ratios with the Galactocentric distance and with the metallicity of the clusters and field stars. Our results, derived from the largest and homogeneous sample of s-process abundances in the literature, confirm the growth with decreasing stellar ages of the s-process abundances in both field and open cluster stars. At the same time, taking advantage of the abundances of open clusters located in a wide Galactocentric range, they open a new view on the dependence of the s-process evolution on the metallicity and star formation history, pointing to different behaviours at various Galactocentric distances.
We investigate the chemical enrichment of r-process elements in the early evolutionary stages of the Milky Way halo within the framework of hierarchical galaxy formation using a semi-analytic merger tree. In this paper, we focus on heavy r-process el ements, Ba and Eu, of extremely metal-poor (EMP) stars and give constraints on their astronomical sites. Our models take into account changes of the surface abundances of EMP stars by the accretion of interstellar matter (ISM). We also consider metal-enrichment of intergalactic medium (IGM) by galactic winds and the resultant pre-enrichment of proto-galaxies. The trend and scatter of the observed r-process abundances are well reproduced by our hierarchical model with $sim 10%$ of core-collapse supernovae in low-mass end ($sim 10M_{odot}$) as a dominant r-process source and the star formation efficiency of $sim 10^{-10} hbox{yr}^{-1}$. For neutron star mergers as an r-process source, their coalescence timescale has to be $ sim 10^7$yrs, and the event rates $sim 100$ times larger than currently observed in the Galaxy. We find that the accretion of ISM is a dominant source of r-process elements for stars with [Ba/H] < -3.5. In this model, a majority of stars at [Fe/H] < -3 are formed without r-process elements but their surfaces are polluted by the ISM accretion. The pre-enrichment affects $sim 4%$ of proto-galaxies, and yet, is surpassed by the ISM accretion in the surface of EMP stars.
We study the s-process abundances (A > 90) at the epoch of the solar-system formation. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic Chem ical Evolution (GCE) model: (i) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s-distribution of isotopes with A > 130; (ii) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C-pocket, which may affect the efficiency of the 13C(a, n)16O reaction, the major neutron source of the s-process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s-predictions at the epoch of the solar-system formation marginally depend on the size and shape of the 13C-pocket once a different weighted range of 13C-pocket strengths is assumed. We ascertain that, independently of the internal structure of the 13C-pocket, the missing solar-system s-process contribution in the range from A = 90 to 130 remains essentially the same.
Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolut ion of the chemical composition. We observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of infrared dark clouds to high-mass protostellar objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and found that the chemical composition evolves along with the evolutionary stages. On average, the molecular abundances increase with time. We modeled the chemical evolution, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model and derived the best-fit chi^2 values of all relevant parameters. A satisfying overall agreement between observed and modeled column densities for most of the molecules was obtained. With the best-fit model we also derived a chemical age for each stage, which gives the timescales for the transformation between two consecutive stages. The best-fit chemical ages are ~10,000 years for the IRDC stage, ~60,000 years for the HMPO stage, ~40,000 years for the HMC stage, and ~10,000 years for the UCHII stage. The total chemical timescale for the entire evolutionary sequence of the high-mass star formation process is on the order of 10^5 years, which is consistent with theoretical estimates. Furthermore, based on the approach of a multiple-line survey of unresolved data, we were able to constrain an intuitive and reasonable physical and chemical model. The results of this study can be used as chemical templates for the different evolutionary stages in high-mass star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا