ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice

64   0   0.0 ( 0 )
 نشر من قبل Amir Rasouli
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Today, one of the major challenges that autonomous vehicles are facing is the ability to drive in urban environments. Such a task requires communication between autonomous vehicles and other road users in order to resolve various traffic ambiguities. The interaction between road users is a form of negotiation in which the parties involved have to share their attention regarding a common objective or a goal (e.g. crossing an intersection), and coordinate their actions in order to accomplish it. In this literature review we aim to address the interaction problem between pedestrians and drivers (or vehicles) from joint attention point of view. More specifically, we will discuss the theoretical background behind joint attention, its application to traffic interaction and practical approaches to implementing joint attention for autonomous vehicles.

قيم البحث

اقرأ أيضاً

One of the major challenges that autonomous cars are facing today is driving in urban environments. To make it a reality, autonomous vehicles require the ability to communicate with other road users and understand their intentions. Such interactions are essential between the vehicles and pedestrians as the most vulnerable road users. Understanding pedestrian behavior, however, is not intuitive and depends on various factors such as demographics of the pedestrians, traffic dynamics, environmental conditions, etc. In this paper, we identify these factors by surveying pedestrian behavior studies, both the classical works on pedestrian-driver interaction and the modern ones that involve autonomous vehicles. To this end, we will discuss various methods of studying pedestrian behavior, and analyze how the factors identified in the literature are interrelated. We will also review the practical applications aimed at solving the interaction problem including design approaches for autonomous vehicles that communicate with pedestrians and visual perception and reasoning algorithms tailored to understanding pedestrian intention. Based on our findings, we will discuss the open problems and propose future research directions.
Studies have shown that autonomous vehicles (AVs) behave conservatively in a traffic environment composed of human drivers and do not adapt to local conditions and socio-cultural norms. It is known that socially aware AVs can be designed if there exi st a mechanism to understand the behaviors of human drivers. We present a notion of Machine Theory of Mind (M-ToM) to infer the behaviors of human drivers by observing the trajectory of their vehicles. Our M-ToM approach, called StylePredict, is based on trajectory analysis of vehicles, which has been investigated in robotics and computer vision. StylePredict mimics human ToM to infer driver behaviors, or styles, using a computational mapping between the extracted trajectory of a vehicle in traffic and the driver behaviors using graph-theoretic techniques, including spectral analysis and centrality functions. We use StylePredict to analyze driver behavior in different cultures in the USA, China, India, and Singapore, based on traffic density, heterogeneity, and conformity to traffic rules and observe an inverse correlation between longitudinal (overspeeding) and lateral (overtaking, lane-changes) driving styles.
Trust in robots has been gathering attention from multiple directions, as it has special relevance in the theoretical descriptions of human-robot interactions. It is essential for reaching high acceptance and usage rates of robotic technologies in so ciety, as well as for enabling effective human-robot teaming. Researchers have been trying to model the development of trust in robots to improve the overall rapport between humans and robots. Unfortunately, the miscalibration of trust in automation is a common issue that jeopardizes the effectiveness of automation use. It happens when a users trust levels are not appropriate to the capabilities of the automation being used. Users can be: under-trusting the automation -- when they do not use the functionalities that the machine can perform correctly because of a lack of trust; or over-trusting the automation -- when, due to an excess of trust, they use the machine in situations where its capabilities are not adequate. The main objective of this work is to examine drivers trust development in the ADS. We aim to model how risk factors (e.g.: false alarms and misses from the ADS) and the short-term interactions associated with these risk factors influence the dynamics of drivers trust in the ADS. The driving context facilitates the instrumentation to measure trusting behaviors, such as drivers eye movements and usage time of the automated features. Our findings indicate that a reliable characterization of drivers trusting behaviors and a consequent estimation of trust levels is possible. We expect that these techniques will permit the design of ADSs able to adapt their behaviors to attempt to adjust drivers trust levels. This capability could avoid under- and over-trusting, which could harm their safety or their performance.
Driver vigilance estimation is an important task for transportation safety. Wearable and portable brain-computer interface devices provide a powerful means for real-time monitoring of the vigilance level of drivers to help with avoiding distracted or impaired driving. In this paper, we propose a novel multimodal architecture for in-vehicle vigilance estimation from Electroencephalogram and Electrooculogram. To enable the system to focus on the most salient parts of the learned multimodal representations, we propose an architecture composed of a capsule attention mechanism following a deep Long Short-Term Memory (LSTM) network. Our model learns hierarchical dependencies in the data through the LSTM and capsule feature representation layers. To better explore the discriminative ability of the learned representations, we study the effect of the proposed capsule attention mechanism including the number of dynamic routing iterations as well as other parameters. Experiments show the robustness of our method by outperforming other solutions and baseline techniques, setting a new state-of-the-art. We then provide an analysis on different frequency bands and brain regions to evaluate their suitability for driver vigilance estimation. Lastly, an analysis on the role of capsule attention, multimodality, and robustness to noise is performed, highlighting the advantages of our approach.
Vision-based driver assistance systems is one of the rapidly growing research areas of ITS, due to various factors such as the increased level of safety requirements in automotive, computational power in embedded systems, and desire to get closer to autonomous driving. It is a cross disciplinary area encompassing specialised fields like computer vision, machine learning, robotic navigation, embedded systems, automotive electronics and safety critical software. In this paper, we survey the list of vision based advanced driver assistance systems with a consistent terminology and propose a taxonomy. We also propose an abstract model in an attempt to formalize a top-down view of application development to scale towards autonomous driving system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا