ترغب بنشر مسار تعليمي؟ اضغط هنا

Blueprint and Evaluation Instruments for a Course on Software Engineering for Sustainability

364   0   0.0 ( 0 )
 نشر من قبل Birgit Penzenstadler
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a summer school course on Software Engineering for Sustainability (SE4S). We provide a detailed blueprint of the contents taught and its evaluation with the instruments that were used.

قيم البحث

اقرأ أيضاً

79 - Kyle E. Niemeyer 2019
This paper describes the motivation and design of a 10-week graduate course that teaches practices for developing research software; although offered by an engineering program, the content applies broadly to any field of scientific research where sof tware may be developed. Topics taught in the course include local and remote version control, licensing and copyright, structuring Python modules, testing and test coverage, continuous integration, packaging and distribution, open science, software citation, and reproducibility basics, among others. Lectures are supplemented by in-class activities and discussions, and all course material is shared openly via GitHub. Coursework is heavily based on a single, term-long project where students individually develop a software package targeted at their own research topic; all contributions must be submitted as pull requests and reviewed/merged by other students. The course was initially offered in Spring 2018 with 17 students enrolled, and will be taught again in Spring 2019.
120 - Yanming Yang , Xin Xia , David Lo 2020
In 2006, Geoffrey Hinton proposed the concept of training Deep Neural Networks (DNNs) and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the pow erful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of deep learning techniques in SE. To fill this gap, we performed a survey to analyse the relevant studies published since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then summarize and classify different deep learning techniques used in SE. We analyzed key optimization technologies used in these deep learning models, and finally describe a range of key research topics using DNNs in SE. Based on our findings, we present a set of current challenges remaining to be investigated and outline a proposed research road map highlighting key opportunities for future work.
Managing and growing a successful cyberinfrastructure such as nanoHUB.org presents a variety of opportunities and challenges, particularly in regard to software. This position paper details a number of those issues and how we have approached them.
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, ther e is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
A growing number of largely uncoordinated initiatives focus on research software sustainability. A comprehensive mapping of the research software sustainability space can help identify gaps in their efforts, track results, and avoid duplication of wo rk. To this end, this paper suggests enhancing an existing schematic of activities in research software sustainability, and formalizing it in a directed graph model. Such a model can be further used to define a classification schema which, applied to research results in the field, can drive the identification of past activities and the planning of future efforts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا