ﻻ يوجد ملخص باللغة العربية
Gaussian processes (GP) are widely used as a metamodel for emulating time-consuming computer codes. We focus on problems involving categorical inputs, with a potentially large number L of levels (typically several tens), partitioned in G << L groups of various sizes. Parsimonious covariance functions, or kernels, can then be defined by block covariance matrices T with constant covariances between pairs of blocks and within blocks. We study the positive definiteness of such matrices to encourage their practical use. The hierarchical group/level structure, equivalent to a nested Bayesian linear model, provides a parameterization of valid block matrices T. The same model can then be used when the assumption within blocks is relaxed, giving a flexible parametric family of valid covariance matrices with constant covariances between pairs of blocks. The positive definiteness of T is equivalent to the positive definiteness of a smaller matrix of size G, obtained by averaging each block. The model is applied to a problem in nuclear waste analysis, where one of the categorical inputs is atomic number, which has more than 90 levels.
Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which a
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar
The analysis of high dimensional survival data is challenging, primarily due to the problem of overfitting which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here we propose a novel method of
Our problem is to find a good approximation to the P-value of the maximum of a random field of test statistics for a cone alternative at each point in a sample of Gaussian random fields. These test statistics have been proposed in the neuroscience li
This paper deals with the optimization of industrial asset management strategies, whose profitability is characterized by the Net Present Value (NPV) indicator which is assessed by a Monte Carlo simulator. The developed method consists in building a