ترغب بنشر مسار تعليمي؟ اضغط هنا

Magma ascent in planetesimals: control by grain size

307   0   0.0 ( 0 )
 نشر من قبل Tim Lichtenberg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rocky planetesimals in the early solar system melted internally and evolved chemically due to radiogenic heating from Al-26. Here we quantify the parametric controls on magma genesis and transport using a coupled petrological and fluid mechanical model of reactive two-phase flow. We find the mean grain size of silicate minerals to be a key control on magma ascent. For grain sizes larger than $approx$ 1 mm, melt segregation produces distinct radial structure and chemical stratification. This stratification is most pronounced for bodies formed at around 1 Myr after formation of Ca,Al-rich inclusions. These findings suggest a link between the time and orbital location of planetesimal formation and their subsequent structural and chemical evolution. According to our models, the evolution of partially molten planetesimal interiors falls into two categories. In the magma ocean scenario, the whole interior of a planetesimal experiences nearly complete melting, which would result in turbulent convection and core-mantle differentiation by the rainfall mechanism. In the magma sill scenario, segregating melts gradually deplete the deep interior of the radiogenic heat source. In this case, magma may form melt-rich layers beneath a cool and stable lid, while core formation would proceed by percolation. Our findings suggest that grain sizes prevalent during the internal heating stage governed magma ascent in planetesimals. Regardless of whether evolution progresses toward a magma ocean or magma sill structure, our models predict that temperature

قيم البحث

اقرأ أيضاً

119 - A.-C. Plesa , N. Tosi (1 2014
The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. [...] Assuming fractional crystallization of the magma ocean, d ense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid (Elkins-Tanton et al., 2003). A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid forms rapidly on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle [...]
In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. As this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay be tween radiation pressure, collisions and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate with numerical models. We propose to explore this issue using a new-generation code that can handle some of the coupling between dynamical and collisional effects. We investigate how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. We use the DyCoSS code of Thebault(2012) to investigate the coupled effect of collisions, radiation pressure and dynamical perturbations in systems having reached a steady state. We consider 2 setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we consider an additional unperturbed case with no planet. We also investigate how possible spatial size segregation affect disc images at different wavelengths. We find that PSDs are always strongly spatially segregated. The only case for which they follow a standard dn/dr = C.r**(-3.5) law is for an unperturbed narrow ring, but only within the parent body ring itself. For all other configurations, the PSD can strongly depart from such power laws and have strong spatial gradients. As an example, the geometrical cross section of the disc is rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in s**q with q<-3. Although the exact profiles and spatial variations of PSDs are a complex function of the considered set-up, we are however able to derive some robust results that should be useful for image-or-SED-fitting models of observed discs.
The ungrouped iron meteorite Nedagolla is the first meteorite with bulk Mo, Ru, and Ni isotopic compositions that are intermediate between those of the non-carbonaceous (NC) and carbonaceous (CC) meteorite reservoirs. The Hf-W chronology of Nedagolla indicates that this mixed NC-CC isotopic composition was established relatively late, more than 7 million years after Solar System formation. The mixed NC-CC isotopic composition is consistent with the chemical composition of Nedagolla, which combines signatures of metal segregation under more oxidizing conditions (relative depletions in Mo and W), characteristic for CC bodies, and more reducing conditions (high Si and Cr contents), characteristic for some NC bodies, in a single sample. These data combined suggest that Nedagolla formed as the result of collisional mixing of NC and CC core material, which partially re-equilibrated with silicate mantle material that predominantly derives from the NC body. These mixing processes might have occurred during a hit-and-run collision between two differentiated bodies, which also provides a possible pathway for Nedagollas extreme volatile element depletion. As such, Nedagolla provides the first isotopic evidence for early collisional mixing of NC and CC bodies that is expected as a result of Jupiters growth.
During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modelling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration and inferred parent body C concentrations range from 0.0004 to 0.11 wt.%. Parent bodies fall into 2 compositional clusters characterized by cores with medium, and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed system extraction to degassing of a wholly molten body, show that significant open system silicate melting and volatile loss is required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss, and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.
108 - Dhrubaditya Mitra 2013
As a test bed for the growth of protoplanetary bodies in a turbulent circumstellar disk we examine the fate of a boulder using direct numerical simulations of particle seeded gas flowing around it. We provide an accurate description of the flow by im posing no-slip and non-penetrating boundary conditions on the boulder surface using the immersed boundary method pioneered by Peskin (2002). Advected by the turbulent disk flow, the dust grains collide with the boulder and we compute the probability density function (PDF) of the normal component of the collisional velocity. Through this examination of the statistics of collisional velocities we test the recently developed concept of collisional fusion which provides a physical basis for a range of collisional velocities exhibiting perfect sticking. A boulder can then grow sufficiently rapidly to settle into a Keplerian orbit on disk evolution time scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا