ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalues of the linearized 2D Euler equations via Birman-Schwinger and Lins operators

243   0   0.0 ( 0 )
 نشر من قبل Shibi Vasudevan
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study spectral instability of steady states to the linearized 2D Euler equations on the torus written in vorticity form via certain Birman-Schwinger type operators $K_{lambda}(mu)$ and their associated 2-modified perturbation determinants $mathcal D(lambda,mu)$. Our main result characterizes the existence of an unstable eigenvalue to the linearized vorticity operator $L_{rm vor}$ in terms of zeros of the 2-modified Fredholm determinant $mathcal D(lambda,0)=det_{2}(I-K_{lambda}(0))$ associated with the Hilbert Schmidt operator $K_{lambda}(mu)$ for $mu=0$. As a consequence, we are also able to provide an alternative proof to an instability theorem first proved by Zhiwu Lin which relates existence of an unstable eigenvalue for $L_{rm vor}$ to the number of negative eigenvalues of a limiting elliptic dispersion operator $A_{0}$.

قيم البحث

اقرأ أيضاً

We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi (Omega)$, $tilde phi (Omega)$ we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm $|tilde phi -phi |_{W^{1,p}(Omega)}$ for finite values of $p$, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.
We prove existence of the global attractor of the damped and driven Euler--Bardina equations on the 2D sphere and on arbitrary domains on the sphere and give explicit estimates of its fractal dimension in terms of the physical parameters.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of the paper presents results concerning the existence of a principal eigenfunction. Then we present various necessary and/or sufficient conditions for the maximum principle to hold, and use these to characterize the simplicity of the principal eigenvalue.
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes a desingularization of a pair of point vortices with equal magnitude and opposite signs. The results are obtained by using an improved vorticity method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا