ﻻ يوجد ملخص باللغة العربية
We study spectral instability of steady states to the linearized 2D Euler equations on the torus written in vorticity form via certain Birman-Schwinger type operators $K_{lambda}(mu)$ and their associated 2-modified perturbation determinants $mathcal D(lambda,mu)$. Our main result characterizes the existence of an unstable eigenvalue to the linearized vorticity operator $L_{rm vor}$ in terms of zeros of the 2-modified Fredholm determinant $mathcal D(lambda,0)=det_{2}(I-K_{lambda}(0))$ associated with the Hilbert Schmidt operator $K_{lambda}(mu)$ for $mu=0$. As a consequence, we are also able to provide an alternative proof to an instability theorem first proved by Zhiwu Lin which relates existence of an unstable eigenvalue for $L_{rm vor}$ to the number of negative eigenvalues of a limiting elliptic dispersion operator $A_{0}$.
We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi
We prove existence of the global attractor of the damped and driven Euler--Bardina equations on the 2D sphere and on arbitrary domains on the sphere and give explicit estimates of its fractal dimension in terms of the physical parameters.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes