ﻻ يوجد ملخص باللغة العربية
In spite of the complicated behavior in the time domain, long GRBs show a simpler behavior in the Fourier domain of frequencies, represented by power density spectra, PDS. Recently, there are some relations found between GRBs properties and PDS parameters, modeled by power-laws. Among them, the correlation between peak energy $E_{peak}$ and PDS slope $alpha$ shows a clear evidence. In this work we try to understand the origin of this correlation, making use of synthetic pulses. We find some preliminary evidences that $E_{peak}-alpha$ relation can be seen as a new confirmation of the empiric relations $E_{peak}-L$ and $t_{p}-L$ for GRBs.
We have collected all of the published photometry for GRB 990123 and GRB 990510, the first two gamma-ray bursts where breaks were seen in the light curves of their optical afterglows, and determined the shapes of their light curves and the break time
We calculate radio-to-X-ray light curves for afterglows caused by non-thermal emission from a highly relativistic blast wave, which is inferred from the gamma-ray flux detected in GRB 980425 and from the very bright radio emission detected in SN 1998
Aims: We investigate the behavior of the frequency-centered light curves expected within the standard model of Gamma Ray Bursts allowing the maximum electron energy to be a free parameter permitted to take low values. Methods: We solve the spatially
We use a sample of 19 Gamma Ray Bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our samp
Within the last years, the classification of variable stars with Machine Learning has become a mainstream area of research. Recently, visualization of time series is attracting more attention in data science as a tool to visually help scientists to r