ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing strategy of the THESEUS mission

109   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We will discuss the observing strategy of the Transient High Energy Sky and Early Universe Surveyor (THESEUS) mission proposed to ESA as a response to the M5 call for proposals. The description of THESEUS and its science goals can be found in the white paper by Amati et al. (2017).



قيم البحث

اقرأ أيضاً

This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable cove rage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based approach guarantees solution feasibility. The approach is applied to the proposed SPHEREx mission, which includes coverage of the North and South Celestial Poles, Galactic plane, and a uniform coverage all-sky survey, and the ability to achieve science requirements demonstrated and visualized. Visualizations demonstrate the how the all-sky survey achieves its objectives.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco ming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
63 - G. Stratta , R. Ciolfi , L. Amati 2017
The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. Around 2030, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational around 2030. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astrophysics, operating in strong synergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al. 2017), also in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017.
Within the scientific goals of the THESEUS ESA/M5 candidate mission, a critical item is a fast (within a few s) and accurate (<15 arcmin) Gamma-Ray Burst and high-energy transient location from a few keV up to hard X-ray energy band. For that purpose , the signal multiplexing based on coded masks is the selected option to achieve this goal. This contribution is implemented by the XGIS Imaging System, based on that technique. The XGIS Imaging System has the heritage of previous payload developments: LEGRI/Minisat-01, INTEGRAL, UFFO/Lomonosov and ASIM/ISS. In particular the XGIS Imaging System is an upgrade of the ASIM system in operation since 2018 on the International Space Station. The scientific goal is similar: to detect a gamma-ray transient. But while ASIM focuses on Terrestrial Gamma-ray Flashes, THESEUS aims for the GRBs. For each of the two XGIS Cameras, the coded mask is located at 630 mm from the detector layer. The coding pattern is implemented in a Tungsten plate (1 mm thickness) providing a good multiplexing capability up to 150 keV. In that way both XGIS detector layers (based on Si and CsI detectors) have imaging capabilities at the medium - hard X-ray domain. This is an improvement achieved during the current THESEUS Phase-A. The mask is mounted on top of a collimator that provides the mechanical assembly support, as well as good cosmic X-ray background shielding. The XGIS Imaging System preliminary structural and thermal design, and the corresponding analyses, are included in this contribution, as it is a preliminary performance evaluation.
71 - D. Gotz , O. Boulade , B. Cordier 2018
The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT is the enabling instrument on board THESEUS for measuring autonomously the redshift of the several hundreds of GRBs detected per year by the Soft X-ray Imager (SXI) and the X- and Gamma-Ray Imaging Spectrometer (XGIS), and thus allowing the big ground based telescopes to be triggered on a redshift pre-selected sample, and finally fulfilling the cosmological goals of the mission. The IRT will be composed by a primary mirror of 0.7 m of diameter coupled to a single camera in a Cassegrain design. It will work in the 0.7-1.8 {mu}m wavelength range, and will provide a 10x10 arc min imaging field of view with sub-arc second localization capabilities, and, at the same time, a 5x5 arc min field of view with moderate (R up to ~500) spectroscopic capabilities. Its sensitivity, mainly limited by the satellite jitter, is adapted to detect all the GRBs, localized by the SXI/XGIS, and to acquire spectra for the majority of them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا