ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate-mass black holes in dwarf galaxies out to redshift $sim$ 2.4 in the Chandra COSMOS Legacy Survey

89   0   0.0 ( 0 )
 نشر من قبل Mar Mezcua
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a sample of 40 AGN in dwarf galaxies at redshifts $z lesssim$ 2.4. The galaxies are drawn from the textit{Chandra} COSMOS-Legacy survey as having stellar masses $10^{7}leq M_{*}leq3 times 10^{9}$ M$_{odot}$. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range $L_mathrm{0.5-10 keV} sim10^{39} - 10^{44}$ erg s$^{-1}$. With 12 sources at $z > 0.5$, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at $z = 2.39$ and with $L_mathrm{0.5-10 keV} sim 10^{44}$ erg s$^{-1}$. One of the dwarf galaxies has $M_mathrm{*} = 6.6 times 10^{7}$ M$_{odot}$ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses $sim 10^{4} - 10^{5}$ M$_{odot}$ and typical Eddington ratios $> 1%$. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to $z$ = 0.7. We find that the AGN fraction for $10^{9}< M_{*}leq3 times 10^{9}$ M$_{odot}$ and $L_mathrm{X} sim 10^{41}-10^{42}$ erg s$^{-1}$ is $sim$0.4% for $z leq$ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.



قيم البحث

اقرأ أيضاً

55 - M. Mezcua , H. Suh , F. Civano 2019
Dwarf galaxies are thought to host the remnants of the early Universe seed black holes (BHs) and to be dominated by supernova feedback. However, recent studies suggest that BH feedback could also strongly impact their growth. We report the discovery of 35 dwarf galaxies hosting radio AGN out to redshift $sim$3.4, which constitutes the highest-redshift sample of AGN in dwarf galaxies. The galaxies are drawn from the VLA-COSMOS 3 GHz Large Project and all are star-forming. After removing the contribution from star formation to the radio emission, we find a range of AGN radio luminosities of $L^mathrm{AGN}_mathrm{1.4 GHz} sim 10^{37}$-$10^{40}$ erg s$^{-1}$. The bolometric luminosities derived from the fit of their spectral energy distribution are $gtrsim 10^{42}$ erg s$^{-1}$, in agreement with the presence of AGN in these dwarf galaxies. The 3 GHz radio emission of most of the sources is compact and the jet powers range from $Q_mathrm{jet} sim 10^{42}$ to 10$^{44}$ erg s$^{-1}$. These values, as well as the finding of jet efficiencies $geq 10$ % in more than 50% of the sample, indicate that dwarf galaxies can host radio jets as powerful as those of massive radio galaxies whose jet mechanical feedback can strongly affect the formation of stars in the host galaxy. We conclude that AGN feedback can also have a very strong impact on dwarf galaxies, either triggering or hampering star formation and possibly the material available for BH growth. This implies that those low-mass AGN hosted in dwarf galaxies might not be the untouched relics of the early seed BHs, which has important implications for seed BH formation models.
We study a sample of $sim$50,000 dwarf starburst and late-type galaxies drawn from the COSMOS survey with the aim of investigating the presence of nuclear accreting black holes (BHs) as those seed BHs from which supermassive BHs could grow in the ear ly Universe. We divide the sample into five complete redshift bins up to $z=1.5$ and perform an X-ray stacking analysis using the textit{Chandra} COSMOS-Legacy survey data. After removing the contribution from X-ray binaries and hot gas to the stacked X-ray emission, we still find an X-ray excess in the five redshift bins that can be explained by nuclear accreting BHs. This X-ray excess is more significant for $z<0.5$. At higher redshifts, these active galactic nuclei could suffer mild obscuration, as indicated by the analysis of their hardness ratios. The average nuclear X-ray luminosities in the soft band are in the range 10$^{39}-10^{40}$ erg s$^{-1}$. Assuming that the sources accrete at $geq$ 1% the Eddington rate, their BH masses would be $leq$ 10$^{5}$ M$_{odot}$, thus in the intermediate-mass BH regime, but their mass would be smaller than the one predicted by the BH-stellar mass relation. If instead the sources follow the correlation between BH mass and stellar mass, they would have sub-Eddington accreting rates of $sim$ 10$^{-3}$ and BH masses 1-9 $times$ 10$^{5}$ M$_{odot}$. We thus conclude that a population of intermediate-mass BHs exists in dwarf starburst galaxies, at least up to $z$=1.5, though their detection beyond the local Universe is challenging due to their low luminosity and mild obscuration unless deep surveys are employed.
Spin measurements of supermassive black holes (SMBHs) provide crucial constraints on the accretion processes that power active galactic nuclei (AGN), fuel outflows, and trigger black hole growth. However, spin measurements are mainly limited to a few dozen nearby sources for which high quality, high S/N spectra (e.g., from Chandra, XMM-Newton, Suzaku, NuSTAR) are available. Here we measure the average SMBH spin of $sim$1900 AGN in the Chandra COSMOS-Legacy survey using spectral stacking analysis. We find broad Fe K$alpha$ line emission in the average COSMOS spectrum (Gaussian width $sigma=0.27pm0.05$ keV), and by fitting this emission line profile with relativistic line models, we measure the average black hole spin parameter $a=0.62~substack{+0.07 -0.17}$. The sample size, availability of multiwavelength data, and spatial resolution of the COSMOS Legacy field also provide a unique environment to investigate the average SMBH spin as a function of other observables (e.g., redshift, luminosity) up to $zsim5.3$. We find that optically classified Type 1 sources have broader Fe K$alpha$ line emission than Type 2 sources. X-ray unobscured and obscured sources, as defined by their column densities, have widths that are consistent with the optically defined unobscured and obscured sources, respectively. There is some evidence for evolution of the Fe K$alpha$ width and black hole spin parameter with luminosity, but not conclusively with redshift. The results of this work provide insights into the average spins of SMBHs in AGN, shedding light on their growth mechanisms and observed co-evolution with their host galaxies.
The existence of a large population of Compton thick (CT, $N_{H}>10^{24} cm^{-2}$) AGN is a key ingredient of most Cosmic X-ray background synthesis models. However, direct identification of these sources, especially at high redshift, is difficult du e to the flux suppression and complex spectral shape produced by CT obscuration. We explored the Chandra COSMOS Legacy point source catalog, comprising 1855 sources, to select via X-ray spectroscopy, a large sample of CT candidates at high redshift. Adopting a physical model to reproduce the toroidal absorber, and a Monte-Carlo sampling method, we selected 67 individual sources with >5% probability of being CT, in the redshift range $0.04<z<3.5$. The sum of the probabilities above $N_{H}>10^{24} cm^{-2}$, gives a total of 41.9 effective CT, corrected for classification bias. We derive number counts in the 2-10 keV band in three redshift bins. The observed logN-logS is consistent with an increase of the intrinsic CT fraction ($f_{CT}$) from $sim0.30$ to $sim0.55$ from low to high redshift. When rescaled to a common luminosity (log(L$_{rm X}$/erg/s)$=44.5$) we find an increase from $f_{CT}=0.19_{-0.06}^{+0.07}$ to $f_{CT}=0.30_{-0.08}^{+0.10}$ and $f_{CT}=0.49_{-0.11}^{+0.12}$ from low to high z. This evolution can be parametrized as $f_{CT}=0.11_{-0.04}^{+0.05}(1+z)^{1.11pm0.13}$. Thanks to HST-ACS deep imaging, we find that the fraction of CT AGN in mergers/interacting systems increases with luminosity and redshift and is significantly higher than for non-CT AGN hosts.
193 - S. Marchesi , F. Civano , M. Elvis 2015
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the prev ious C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift towards faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGN and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا