ﻻ يوجد ملخص باللغة العربية
Let $L$ be a fixed branch -- that is, an irreducible germ of curve -- on a normal surface singularity $X$. If $A,B$ are two other branches, define $u_L(A,B) := dfrac{(L cdot A) : (L cdot B)}{A cdot B}$, where $A cdot B$ denotes the intersection number of $A$ and $B$. Call $X$ arborescent if all the dual graphs of its resolutions are trees. In a previous paper, the first three authors extended a 1985 theorem of P{l}oski by proving that whenever $X$ is arborescent, the function $u_L$ is an ultrametric on the set of branches on $X$ different from $L$. In the present paper we prove that, conversely, if $u_L$ is an ultrametric, then $X$ is arborescent. We also show that for any normal surface singularity, one may find arbitrarily large sets of branches on $X$, characterized uniquely in terms of the topology of the resolutions of their sum, in restriction to which $u_L$ is still an ultrametric. Moreover, we describe the associated tree in terms of the dual graphs of such resolutions. Then we extend our setting by allowing $L$ to be an arbitrary semivaluation on $X$ and by defining $u_L$ on a suitable space of semivaluations. We prove that any such function is again an ultrametric if and only if $X$ is arborescent, and without any restriction on $X$ we exhibit special subspaces of the space of semivaluations in restriction to which $u_L$ is still an ultrametric.
We obtain several new characterizations of ultrametric spaces in terms of roundness, generalized roundness, strict p-negative type, and p-polygonal equalities (p > 0). This allows new insight into the isometric embedding of ultrametric spaces into Eu
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being Q-Gorenstein or the pair being log Q-Gorenstein. The main features
We show, in this first part, that the maximal number of singular points of a quartic surface $X subset mathbb{P}^3_K$ defined over an algebraically closed field $K$ of characteristic $2$ is at most $18$. We produce examples with $14$ singular points,
We study the singularities of Legendrian subvarieties of contact manifolds in the complex-analytic category and prove two rigidity results. The first one is that Legendrian singularities with reduced tangent cones are contactomorphically biholomorphi
We give a version in characteristic $p>0$ of Mumfords theorem characterizing a smooth complex germ of surface $(X,x)$ by the triviality of the topological fundamental group of $U=Xsetminus {x}$. This note relies on discussions the authors had durin