ترغب بنشر مسار تعليمي؟ اضغط هنا

TASI Lectures on the Emergence of the Bulk in AdS/CFT

72   0   0.0 ( 0 )
 نشر من قبل Daniel Harlow
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Harlow




اسأل ChatGPT حول البحث

These lectures review recent developments in our understanding of the emergence of local bulk physics in AdS/CFT. The primary topics are sufficient conditions for a conformal field theory to have a semiclassical dual, bulk reconstruction, the quantum error correction interpretation of the correspondence, tensor network models of holography, and the quantum Ryu-Takayanagi formula.



قيم البحث

اقرأ أيضاً

165 - A. A. Saharian 2020
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both these cases the contribution in the vacuum expectation value (VEV) of the energy-momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary the VEV of the energy-momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy-momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane.
119 - Daniel Baumann 2018
These lectures cover aspects of primordial cosmology with a focus on observational tests of physics beyond the Standard Model. The presentation is divided into two parts: In Part I, we study the production of new light particles in the hot big bang a nd describe their effects on the anisotropies of the cosmic microwave background. In Part II, we investigate the possibility of very massive particles being created during inflation and determine their imprints in higher-order cosmological correlations.
We revisit a non-perturbation theory of quantum gravity in $1.5$ order underlying an emergent gravitational pair of $(4{bar 4})$-brane with a renewed interest. In particular the formulation is governed by a geometric torsion ${cal H}_3$ in second ord er with an on-shell NS form in first order. Interestingly the gravitational pair is sourced by a Kalb-Ramond two form CFT on a $D_5$-brane in $d$$=$$10$ type IIB superstring theory. We show that a generic form theory containing a CFT sector in $d=6$ bulk may be described by a boundary ${rm AdS}_5$ with a quintessence Q. Analysis reveals that the bulk/boundary duality in emergent gravity can be a potential tool to explore the quintessential cosmology.
A common method to prepare states in AdS/CFT is to perform the Euclidean path integral with sources turned on for single-trace operators. These states can be interpreted as coherent states of the bulk quantum theory associated to Lorentzian initial d ata on a Cauchy slice. In this paper, we discuss the extent to which arbitrary initial data can be obtained in this way. We show that the initial data must be analytic and define the subset of it that can be prepared by imposing bulk regularity. Turning this around, we show that for generic analytic initial data the corresponding Euclidean section contains singularities coming from delta function sources in the bulk. We propose an interpretation of these singularities as non-perturbative objects in the microscopic theory.
122 - Nabil Iqbal , Hong Liu 2008
We show that at the level of linear response the low frequency limit of a strongly coupled field theory at finite temperature is determined by the horizon geometry of its gravity dual, i.e. by the membrane paradigm fluid of classical black hole mecha nics. Thus generic boundary theory transport coefficients can be expressed in terms of geometric quantities evaluated at the horizon. When applied to the stress tensor this gives a simple, general proof of the universality of the shear viscosity in terms of the universality of gravitational couplings, and when applied to a conserved current it gives a new general formula for the conductivity. Away from the low frequency limit the behavior of the boundary theory fluid is no longer fully captured by the horizon fluid even within the derivative expansion; instead we find a nontrivial evolution from the horizon to the boundary. We derive flow equations governing this evolution and apply them to the simple examples of charge and momentum diffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا