ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-specific heat determination of the ratio of competing first- and second-neighbor exchange interactions in frustrated spin-$frac{1}{2}$ chains

117   0   0.0 ( 0 )
 نشر من قبل Dayasindhu Dey
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic susceptibility $chi(T)$ of spin-1/2 chains is widely used to quantify exchange interactions, even though $chi(T)$ is similar for different combinations of ferromagnetic $J_1$ between first neighbors and antiferromagnetic $J_2$ between second neighbors. We point out that the spin specific heat $C(T)$ directly determines the ratio $alpha = J_2/|J_1|$ of competing interactions. The $J_1-J_2$ model is used to fit the isothermal magnetization $M(T,H)$ and $C(T,H)$ of spin-1/2 Cu(II) chains in LiCuSbO$_4$. By fixing $alpha$, $C(T)$ resolves the offsetting $J_1$, $alpha$ combinations obtained from $M(T,H)$ in cuprates with frustrated spin chains.

قيم البحث

اقرأ أيضاً

The spin-1/2 chain with isotropic Heisenberg exchange $J_1$, $J_2 > 0$ between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed $J_1/J_2$ between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor $S(q)$ that diverges at wave vector $q_m$ in QLRO($q_m$) phases with periodicity $2pi/q_m$ but remains finite in gapped phases. $S(q_m)$ is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of $S(q_m)$ are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO($pi/2$) phase between $-1.2 < J_1/|J_2| < 0.45$. Numerical results and field theory agree well for quantum critical points at small frustration $J_2$ but disagree in the sector of weak exchange $J_1$ between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.
Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h u=gmu_B B$ line) fr equency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=frac{1}{2}$ Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl$_3$, revealing a good qualitative agreement with experiment.
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord er-wave (BOW) phases with finite-range spin correlations. Exact diagonalization and density matrix renormalization group (DMRG) calculations of S(q) indicate a decoupled phase with QLRO and q_m = pi/2 in chains with large antiferromagnetic exchange between second neighbors. S(q_m) identifies quantum phase transitions based on GS spin correlations.
Exact diagonalization of finite spin-1/2 chains with periodic boundary conditions is applied to the ground state (gs) of chains with ferromagnetic (F) exchange $J_1 < 0$between first neighbors, antiferromagnetic (AF) exchange $J_2 = alpha J_1 > 0$bet ween second neighbors, and axial anisotropy $0 le Delta le 1$. In zero field, the gs is in the $S_z = 0$ sector for the relevant parameters and is doubly degenerate at multiple points $gamma_m = (alpha_m, Delta_m)$ in the $alpha$, $Delta$ plane. Degeneracy under inversion at sites or spin parity or both leads, respectively, to a bond order wave (BOW), to staggered magnetization or to vector chiral (VC) order. Exact results up to $N = 28$ spins directly yield order parameters and spin correlation functions whose weak N dependencies allow inferences about infinite chains. The high-spin gs at $J_2 = 0$ changes discontinuously at $gamma_1 = (-1/4, 1)$ to a singlet in the isotropic ($Delta = 1$) chain. The transition from high to low spin $S(alpha, Delta)$ is continuous for $ Delta < Delta_B = 0.95 pm 0.01$ on the degeneracy line $alpha_1(Delta)$. The gs has staggered magnetization between $Delta_A = 0.72$ and $Delta_B$, and a BOW for $Delta < Delta_A$. When both inversion and spin parity are reversed at $gamma_m$, the correlation functions $C(p)$ for spins separated by $p$ sites are identical. $C(p)$ minima are shifted by $pi/2$ from the minima of VC order parameters at separation $p$, consistent with right and left-handed helices along the z axis and spins in the xy plane. Degenerate gs of finite chains are related to quantum phase diagrams of extended $alpha$, $Delta$ chains, with good agreement for order parameters along the line $alpha_1(Delta)$.
The spin-1/2 chain with isotropic exchange J1, J2 > 0 between first and second neighbors is frustrated for either sign of J1 and has a singlet ground state (GS) for J1/J2 $ge - 4$. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J1/J2 are evaluated using exact diagonalization (ED) and density matrix renormalization group (DMRG) calculations. The wave vector $q_G$ of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor $S(q)$. Variable $q_G$ indicates IC phases in two $J1/J2$ intervals, [ -4, -1.24] and [0.44, 2], and a C-IC point at J1/J2 = 2. The decoupled C phase in [-1.24, 0.44] has constant $q_G = {pi}/2$, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, $E_m$ and $E_{sigma}$, are degenerate in finite systems at specific frustration $J1/J2$. Level crossing extrapolates in the thermodynamic limit to the same critical points as $q_G$. The $S(q)$ peak diverges at $q_G = {pi}$ in the gapless phase with $J1/J2 > 4.148$ and quasi-long-range order (QLRO({$pi$})). $S(q)$ diverges at $pm {pi}/2$ in the decoupled phase with QLRO({$pi$}/2), but is finite in gapped phases with finite range correlations. Numerical results and field theory agree at small $J2/J1$ but disagree for the decoupled phase with weak exchange $J1$ between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO({$pi$}/2) and no IC phases; the other has a single IC phase without a decoupled phase in between.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا