ﻻ يوجد ملخص باللغة العربية
Weyl fermions in an external magnetic field exhibit the chiral anomaly, a non-conservation of chiral fermions. In a Weyl semimetal, a spatially inhomogeneous Weyl node separation causes similar effect by creating an intrinsic pseudo-magnetic field with an opposite sign for nodes of opposite chirality. In the present work we study the interplay of external and intrinsic fields. In particular, we focus on quantum oscillations due to bulk-boundary trajectories. When caused by an external field, such oscillations are a proven experimental technique to detect Weyl semimetals. We show that the intrinsic field leaves hallmarks on such oscillations by decreasing the period of the oscillations in an analytically traceable manner. The oscillations can thus be used to test the effect of an intrinsic field and to extract its strength.
The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the rea
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fe
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
We present how to detect type-$1$ Weyl nodes in a material by inelastic neutron scattering. Such an experiment first of all allows one to determine the dispersion of the Weyl fermions. We extend the reasoning to produce a quantitative test of the Wey
Theory of light absorption and circular photocurrent in Weyl semimetals is developed for arbitrary large light intensities with account for both elastic and inelastic relaxation processes of Weyl fermions. The direct optical transition rate is shown