ترغب بنشر مسار تعليمي؟ اضغط هنا

OSSOS: X. How to use a Survey Simulator: Statistical Testing of Dynamical Models Against the Real Kuiper Belt

80   0   0.0 ( 0 )
 نشر من قبل Samantha Lawler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All surveys include observational biases, which makes it impossible to directly compare properties of discovered trans-Neptunian Objects (TNOs) with dynamical models. However, by carefully keeping track of survey pointings on the sky, detection limits, tracking fractions, and rate cuts, the biases from a survey can be modelled in Survey Simulator software. A Survey Simulator takes an intrinsic orbital model (from, for example, the output of a dynamical Kuiper belt emplacement simulation) and applies the survey biases, so that the biased simulated objects can be directly compared with real discoveries. This methodology has been used with great success in the Outer Solar System Origins Survey (OSSOS) and its predecessor surveys. In this chapter, we give four examples of ways to use the OSSOS Survey Simulator to gain knowledge about the true structure of the Kuiper Belt. We demonstrate how to statistically compare different dynamical model outputs with real TNO discoveries, how to quantify detection biases within a TNO population, how to measure intrinsic population sizes, and how to use upper limits from non-detections. We hope this will provide a framework for dynamical modellers to statistically test the validity of their models.



قيم البحث

اقرأ أيضاً

Observations show that 100-km-class Kuiper belt objects (KBOs) can be divided in (at least) two color groups, hereafter red (R, g-i<1.2) and very red (VR, g-i>1.2), reflecting a difference in their surface composition. This is thought to imply that K BOs formed over a relatively wide range of radial distance, r. The cold classicals at 42<r<47 au are predominantly VR and known Neptune Trojans at r=30 au are mostly R. Intriguingly, however, the dynamically hot KBOs show a mix of R and VR colors and no correlation of color with r. Here we perform migration/instability simulations where the Kuiper belt is populated from an extended planetesimal disk. We find that the color observations can be best understood if R objects formed at r<r* and VR objects at r>r*, with 30<r*<40 au. The proposed transition at 30<r*<40 au would explain why the VR objects in the dynamically hot population have smaller orbital inclinations than the R objects, because the orbital excitation from Neptune weakens for orbits starting beyond 30 au. Possible causes of the R-VR color bimodality are discussed.
The surface characterization of Trans-Neptunian Binaries (TNBs) is key to understanding the properties of the disk of planetesimals from which these objects formed. In the optical wavelengths, it has been demonstrated that most equal-sized component systems share similar colors, suggesting they have a similar composition. The color homogeneity of binary pairs contrasts with the overall diversity of colors in the Kuiper belt, which was interpreted as evidence that Trans-Neptunian Objects (TNOs) formed from a locally homogeneous and globally heterogeneous protoplanetary disk. In this paradigm, binary pairs must have formed early, before the dynamically hot TNOs were scattered out from their formation location. The latter inferences, however, relied on the assumption that the matching colors of the binary components imply matching composition. Here, we test this assumption by examining the component-resolved photometry of three TNBs found in the Outer Solar System Origins Survey: 505447 (2013 SQ99), 511551 (2014 UD225) and 506121 (2016 BP81), across the visible and J-band near-infrared wavelength range. We report similar colors within 2 sigma for the binary pairs suggestive of similar reflectance spectra and hence surface composition. This advocates for gravitational collapse of pebble clouds as a possible TNO formation route. We however stress that several similarly small TNOs, including at least one binary, have been shown to exhibit substantial spectral variability in the near-infrared, implying color equality of binary pairs is likely to be violated in some cases.
Both physical and dynamical properties must be considered to constrain the origins of the dynamically excited distant Solar System populations. We present high-precision (g-r) colors for 25 small (Hr>5) dynamically excited Trans-Neptunian Objects (TN Os) and centaurs acquired as part of the Colours of the Outer Solar System Origins Survey (Col-OSSOS). We combine our dataset with previously published measurements and consider a set of 229 colors of outer Solar System objects on dynamically excited orbits. The overall color distribution is bimodal and can be decomposed into two distinct classes, termed `gray and `red, that each has a normal color distribution. The two color classes have different inclination distributions: red objects have lower inclinations than the gray ones. This trend holds for all dynamically excited TNO populations. Even in the worst-case scenario, biases in the discovery surveys cannot account for this trend: it is intrinsic to the TNO population. Considering that TNOs are the precursors of centaurs, and that their inclinations are roughly preserved as they become centaurs, our finding solves the conundrum of centaurs being the only outer Solar System population identified so far to exhibit this property (Tegler et al. 2016). The different orbital distributions of the gray and red dynamically excited TNOs provide strong evidence that their colors are due to different formation locations in a disk of planetesimals with a compositional gradient.
The cold main classical Kuiper Belt consists of those small solar system bodies with low orbital inclinations and orbital semi-major axes between 42.4 and 47.7~au. Various arguments suggest that these objects formed textit{in situ} and the original p opulation has experienced minimal collisional modification since their formation. Using the Outer Solar System Origins Survey (OSSOS) ensemble sample and characterization, combined with constraints on the number of small cold classical objects from deeper surveys and supported by evidence from the Minor Planet Center catalog, we determine the absolute magnitude $H_r$ distribution of the cold classical belt from $H_rsimeq5$ to 12 (roughly diameters of 400 km to 20 km). We conclude that the cold populations size distribution exhibits an exponential cutoff at large sizes. Exponential cutoffs at large sizes are not a natural outcome of pair-wise particle accretion but exponentially tapered power-law size distributions are a feature of numerical simulations of planetesimal formation via a streaming instability. Our observation of an exponential cutoff agrees with previous observational inferences that no large objects ($D gtrsim 400$~km) exist in the cold population. Studies of the transneptunian region are providing the parameters that will enable future streaming-instability studies to determine the initial conditions of planetesimal formation in the $approx 45$~au region of the Suns protoplanetary disk.
158 - W. C. Fraser , M. E. Brown 2010
Here we report WFPC2 observations of the Quaoar-Weywot Kuiper belt binary. From these observations we find that Weywot is on an elliptical orbit with eccentricity of 0.14 {pm} 0.04, period of 12.438 {pm} 0.005 days, and a semi-major axis of 1.45 {pm} 0.08 {times} 104 km. The orbit reveals a surpsingly high Quaoar-Weywot system mass of 1.6{pm}0.3{times}10^21 kg. Using the surface properties of the Uranian and Neptunian satellites as a proxy for Quaoars surface, we reanalyze the size estimate from Brown and Trujillo (2004). We find, from a mean of available published size estimates, a diameter for Quaoar of 890 {pm} 70 km. We find Quaoars density to be rho = 4.2 {pm} 1.3 g cm^-3, possibly the highest density in the Kuiper belt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا