ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Inference for Randomized Benchmarking Protocols

80   0   0.0 ( 0 )
 نشر من قبل Ian Hincks
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Randomized benchmarking (RB) protocols are standard tools for characterizing quantum devices. Prior analyses of RB protocols have not provided a complete method for analyzing realistic data, resulting in a variety of ad-hoc methods. The main confounding factor in rigorously analyzing data from RB protocols is an unknown and noise-dependent distribution of survival probabilities over random sequences. We propose a hierarchical Bayesian method where these survival distributions are modeled as nonparametric Dirichlet process mixtures. Our method infers parameters of interest without additional assumptions about the underlying physical noise process. We show with numerical examples that our method works robustly for both standard and highly pathological error models. Our method also works reliably at low noise levels and with little data because we avoid the asymptotic assumptions of commonly used methods such as least-squares fitting. For example, our method produces a narrow and consistent posterior for the average gate fidelity from ten random sequences per sequence length in the standard RB protocol.



قيم البحث

اقرأ أيضاً

Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. For general gatesets, however, it is difficult to draw robust conclusions from the resulting data. Here we propose a new method based on representat ion theory that has little experimental overhead and applies to a broad class of benchmarking problems. As an example, we apply our method to a gateset that includes the $T$-gate, and analyze a new interleaved benchmarking protocol that extracts the average fidelity of a 2-qubit Clifford gate using only single-qubit Clifford gates as reference.
To improve the performance of multi-qubit algorithms on quantum devices it is critical to have methods for characterizing non-local quantum errors such as crosstalk. To address this issue, we propose and test an extension to the analysis of simultane ous randomized benchmarking data -- correlated randomized benchmarking. We fit the decay of correlated polarizations to a composition of fixed-weight depolarizing maps to characterize the locality and weight of crosstalk errors. From these errors we introduce a crosstalk metric which indicates the distance to the closest map with only local errors. We demonstrate this technique experimentally with a four-qubit superconducting device and utilize correlated RB to validate crosstalk reduction when we implement an echo sequence.
Any technology requires precise benchmarking of its components, and the quantum technologies are no exception. Randomized benchmarking allows for the relatively resource economical estimation of the average gate fidelity of quantum gates from the Cli fford group, assuming identical noise levels for all gates, making use of suitable sequences of randomly chosen Clifford gates. In this work, we report significant progress on randomized benchmarking, by showing that it can be done for individual quantum gates outside the Clifford group, even for varying noise levels per quantum gate. This is possible at little overhead of quantum resources, but at the expense of a significant classical computational cost. At the heart of our analysis is a representation-theoretic framework that we develop here which is brought into contact with classical estimation techniques based on bootstrapping and matrix pencils. We demonstrate the functioning of the scheme at hand of benchmarking tensor powers of T-gates. Apart from its practical relevance, we expect this insight to be relevant as it highlights the role of assumptions made on unknown noise processes when characterizing quantum gates at high precision.
Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated by RB depends on the sampling strategy (i.e., how to sample sequences to be run in the protocol). The sampling strategy is determined by a set of configurable parameters (an RB configuration) that includes Clifford lengths (a list of the number of independent Clifford gates in a sequence) and the number of sequences for each Clifford length. The RB configuration is often chosen heuristically and there has been little research on its best configuration. Therefore, we propose a method for fully optimizing an RB configuration so that the confidence interval of the estimated fidelity is minimized while not increasing the total execution time of sequences. By experiments on real devices, we demonstrate the efficacy of the optimization method against heuristic selection in reducing the variance of the estimated fidelity.
The term randomized benchmarking refers to a collection of protocols that in the past decade have become the gold standard for characterizing quantum gates. These protocols aim at efficiently estimating the quality of a set of quantum gates in a way that is resistant to state preparation and measurement errors, and over the years ma
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا