ﻻ يوجد ملخص باللغة العربية
Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the topological character of the constituting electronic bands; the Berry connection. This photocurrent, termed shift current, is expected to emerge on the time-scale of primary photoexcitation process. We observed ultrafast time evolution of the shift current in a prototypical ferroelectric semiconductor by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the band gap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection upon interband optical transition. The shift excitation carries a net charge flow, and is followed by a swing-over of the electron cloud on the sub-picosecond time-scale of electron-phonon interaction. Understanding these substantive characters of the shift current will pave the way for its application to ultrafast sensors and solar cells.
Noncentrosymmetric bulk crystals generate photocurrent without any bias voltage. One of the dominant mechanisms, shift current, comes from a quantum interference of electron wave functions being distinct from classical current caused by electrons dri
The bulk photovoltaic effect generates intrinsic photocurrents in materials without inversion symmetry. Shift current is one of the bulk photovoltaic phenomena related to the Berry phase of the constituting electronic bands: photo-excited carriers co
Field-induced switching of ferroelectric domains with a topological vortex configuration is studied by atomic imaging and electrical biasing in an electron microscope, revealing the role of topological defects on the topologically-guided change of domain-wall pairs in a hexagonal manganite.
Two-dimensional (2D) multiferroics have been casted great attention owing to their promising prospects for miniaturized electronic and memory devices.Here, we proposed a highly stable 2D multiferroic, VOF monolayer, which is an intrinsic ferromagneti
It is thought that the proposed new family of multi-functional materials namely the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. The