ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral dynamics of topological shift-current in ferroelectric semiconductor SbSI

81   0   0.0 ( 0 )
 نشر من قبل Masato Sotome
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Sotome




اسأل ChatGPT حول البحث

Photoexcitation in solids brings about transitions of electrons/holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the topological character of the constituting electronic bands; the Berry connection. This photocurrent, termed shift current, is expected to emerge on the time-scale of primary photoexcitation process. We observed ultrafast time evolution of the shift current in a prototypical ferroelectric semiconductor by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the band gap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection upon interband optical transition. The shift excitation carries a net charge flow, and is followed by a swing-over of the electron cloud on the sub-picosecond time-scale of electron-phonon interaction. Understanding these substantive characters of the shift current will pave the way for its application to ultrafast sensors and solar cells.

قيم البحث

اقرأ أيضاً

Noncentrosymmetric bulk crystals generate photocurrent without any bias voltage. One of the dominant mechanisms, shift current, comes from a quantum interference of electron wave functions being distinct from classical current caused by electrons dri ft or diffusion. The dissipation-less nature of shift current, however, has not been fully verified presumably due to the premature understanding on the role of electrodes. Here we show that the photocurrent dramatically enhances by choosing electrodes with large work function for a $p$-type ferroelectric semiconductor SbSI. An optimized device shows a nearly constant zero-bias photocurrent despite significant variation in photocarrier mobility dependent on temperature, which could be a clear hallmark for the dissipation-less nature of shift current. Distinct from conventional photovoltaic devices, the shift current generator operates as a majority carrier device. The present study provides fundamental design principles for energy-harvesting and photo-detecting devices with novel architectures optimal for the shift current photovoltaic effect.
The bulk photovoltaic effect generates intrinsic photocurrents in materials without inversion symmetry. Shift current is one of the bulk photovoltaic phenomena related to the Berry phase of the constituting electronic bands: photo-excited carriers co herently shift in real space due to the difference in the Berry connection between the valence and conduction bands. Ferroelectric semiconductors and Weyl semimetals are known to exhibit such nonlinear optical phenomena. Here we consider chalcopyrite semiconductor ZnSnP$_2$ which lacks inversion symmetry and calculate the shift current conductivity. We find that the magnitude of the shift current is comparable to the recently measured values on other ferroelectric semiconductors and an order of magnitude larger than bismuth ferrite. The peak response for both optical and shift current conductivity, which mainly comes from P-3$p$ and Sn-5$p$ orbitals, is several eV above the bandgap.
Field-induced switching of ferroelectric domains with a topological vortex configuration is studied by atomic imaging and electrical biasing in an electron microscope, revealing the role of topological defects on the topologically-guided change of domain-wall pairs in a hexagonal manganite.
Two-dimensional (2D) multiferroics have been casted great attention owing to their promising prospects for miniaturized electronic and memory devices.Here, we proposed a highly stable 2D multiferroic, VOF monolayer, which is an intrinsic ferromagneti c half semiconductor with large spin polarization ~2 $mu_{B}/V$ atom and a significant uniaxial magnetic anisotropy along a-axis (410 $mu eV/V$ atom). Meanwhile, it shows excellent ferroelectricity with a large spontaneous polarization 32.7 $mu C/cm^{2}$ and a moderate energy barrier (~43 meV/atom) between two ferroelectric states, which can be ascribed to the Jahn-Teller distortion.Moreover, VOF monolayer harbors an ultra-large negative Poissons ratio in the in-plane direction (~-0.34). The Curie temperature evaluated from the Monte Carlo simulations based on the Ising model is about 215 K, which can be enhanced room temperature under -4% compressive biaxial strain.The combination of ferromagnetism and ferroelectricity in the VOF monolayer could provide a promising platform for future study of multiferroic effects and next-generation multifunctional nanoelectronic device applications.
It is thought that the proposed new family of multi-functional materials namely the ferroelectric thermoelectrics may exhibit enhanced functionalities due to the coupling of the thermoelectric parameters with ferroelectric polarization in solids. The refore, the ferroelectric thermoelectrics are expected to be of immense technological and fundamental significance. As a first step towards this direction, it is most important to identify the existing high performance thermoelectric materials exhibiting ferroelectricity. Herein, through the direct measurement of local polarization switching we show that the recently discovered thermoelectric semiconductor $AgSbSe_{2}$ has local ferroelectric ordering. Using piezo-response force microscopy, we demonstrate the existence of nanometer scale ferroelectric domains that can be switched by external electric field. These observations are intriguing as $AgSbSe_{2}$ crystalizes in cubic rock salt structure with centro-symmetric space group (Fm-3m) and therefore no ferroelectricity is expected. However, from high resolution transmission electron microscopy (HRTEM) measurement we found the evidence of local superstructure formation which, we believe, leads to local distortion of the centro-symmetric arrangement in $AgSbSe_{2}$ and gives rise to the observed ferroelectricity. Stereochemically active $5s^{2}$ lone pair of Sb can also give rise to local structural distortion, which creates ferroelectricity in $AgSbSe_{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا