ﻻ يوجد ملخص باللغة العربية
Studying the prototypical ferromagnetic superconductor UGe$_2$ we demonstrate the potential of the Modulated IntEnsity by Zero Effort (MIEZE) technique---a novel neutron spectroscopy method with ultra-high energy resolution of at least 1~$mu$eV---for the study of quantum matter. We reveal purely longitudinal spin fluctuations in UGe$_2$ with a dual nature arising from $5f$ electrons that are hybridized with the conduction electrons. Local spin fluctuations are perfectly described by the Ising universality class in three dimensions, whereas itinerant spin fluctuations occur over length scales comparable to the superconducting coherence length, showing that MIEZE is able to spectroscopically disentangle the complex low-energy behavior characteristic of quantum materials.
We have investigated low energy nuclear spin excitations in strongly correlated electron compound HoCrO$_3$. We observe clear inelastic peaks at $E = 22.18 pm 0.04$ $mu eV$ in both energy loss and gain sides. The energy of the inelastic peaks remains
We investigated the dispersion of nuclear spin waves in Nd$_2$CuO$_4$ by using neutron spin-echo spectroscopy at millikelvin temperatures. Our results show unambiguously the existence of dispersion of nuclear spin waves in Nd$_2$CuO$_4$ at T = 30 mK.
Inelastic neutron scattering was used to study the low energy magnetic excitations of the ferromagnetic superconductor UGe$_{2}$. The ferromagnetic fluctuations are of Ising nature with a non-conserved magnetization and have an intermediate behavior between localized and itinerant magnetism.
We have studied magnetically frustrated Tb$_2$Sn$_2$O$_7$ by neutron diffraction and high resolution energy-resolved neutron scattering. At 0.1 K, we observe short range magnetic correlations with a typical scale of 4 AA, close to the near neighbor d
We have investigated the ferromagnetic phase transition of elemental Co by high-resolution neutron backscattering spectroscopy. We monitored the splitting of the nuclear levels by the hyperfine field at the Co nucleus. The energy of this hyperfine sp