ﻻ يوجد ملخص باللغة العربية
The LHCb has reported the observation of a resonancelike structure, the Pc(4450), in the J/psi p invariant masses. In our work, we discuss the feasibility of detecting this structure in J/psi photoproduction, e.g. in the measurements that have been approved for the experiments in Hall A/C and in Hall B with CLAS12 at JLab. Also the GlueX Collaboration has already reported preliminary results. We take into account the experimental resolution effects, and perform a global fit to world J/psi photoproduction data in order to study the possibility of observing the Pc(4450) signal in future JLab data. We present a first estimate of the upper limit for the branching ratio of the Pc(4450) into the J/psi p channel, and we study the angular distributions of the differential cross sections. This will shed light on the nature and couplings of the Pc(4450) structure in the future photoproduction experiments.
A resonance-like structure, the P_c(4450), has recently been observed in the J/psi p spectrum by the LHCb collaboration. We discuss the feasibility of detecting this structure in J/psi photoproduction in the CLAS12 experiment at JLab. We present a fi
We study the photoproduction of the vector mesons $Phi$ and $J/Psi$ off a proton in the kinematical regime of large energies and scattering angles within the framework of perturbative QCD. Our investigations are based on the hard scattering approach.
The $O(v^2)$ relativistic correction for inelastic $J/psi$ photoproduction, in which heavy quark pairs are in the dominant Fock state of the quarkonium, is studied in the framework of NRQCD factorization. An assessment of its significance, particular
We present a nonperturbative QCD calculation of elastic $J/psi$ meson production in photon-proton scattering at high energies. Using light cone wave functions of the photon and vector mesons, and the framework of the model of the stochastic QCD vacuu
Using short distance QCD methods based on the operator product expansion, we calculate the $J/psi$ photoproduction cross section in terms of the gluon distribution function of the nucleon. Comparing the result with data, we show that experimental beh