ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures

117   0   0.0 ( 0 )
 نشر من قبل Tse-Ming Chen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.

قيم البحث

اقرأ أيضاً

We investigated the time dependence of two-electron spin states in a double quantum dot fabricated in an InAs nanowire. In this system, spin-orbit interaction has substantial influence on the spin states of confined electrons. Pumping single electron s through a Pauli spin-blockade configuration allowed to probe the dynamics of the two coupled spins via their influence on the pumped current. We observed spin-relaxation with a magnetic field dependence different from GaAs dots, which can be explained by spin-orbit interaction. Oscillations were detected for times shorter than the relaxation time, which we attribute to coherent evolution of the spin states.
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn etic fields. We show that by periodically modulating the spin-orbit coupling along the quantum wire axis, it is possible to create the spatial analogue of spin resonance, without the need for any real magnetic fields. The mapping of time-dependent operations onto a spatial axis suggests a new mode for quantum information processing in which gate operations are encoded into the band structure of the material. We describe a realization of such materials within nanowires at the interface of LaAlO3/SrTiO3 heterostructures.
We study coherent dynamics in a system of dipolar coupled spin qubits diluted in solid and subjected to a driving microwave field. In the case of rare earth ions, anisotropic crystal background results in anisotropic g tensor and thus modifies the di polar coupling. We develop a microscopic theory of spin relaxation in transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in Rabi frequency. We show that the direction of static magnetic field that corresponds to the highest spin g-factor is preferable in order to obtain higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaWO4 crystals with different concentrations of Nd3+ ions.
64 - Yuan Li , H. B. Zhu , G. Q. Wang 2017
We adopt the tight-binding mode-matching method to study the strain effect on silicene heterojunctions. It is found that valley- and spin-dependent separation of electrons cannot be achieved by the electric field only. When a strain and an electric f ield are simultaneously applied to the central scattering region, not only are the electrons of valleys K and K separated into two distinct transmission lobes in opposite transverse directions, but the up-spin and down-spin electrons will also move in the two opposite transverse directions. Therefore, one can realize an effective modulation of valley- and spin-dependent transport by changing the amplitude and the stretch direction of the strain. The phenomenon of the strain-induced valley and spin deflection can be exploited for silicene-based valleytronics devices.
Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer be tween different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. Based on our first-principles implementation, we apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of W. It leads to negative and positive effective spin Hall angles, respectively, which can be directly identified in experiments. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the spin current picture by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا