ﻻ يوجد ملخص باللغة العربية
Understanding of inclusive one-nucleon knockout reactions for long-lived fission fragments (LLFPs) is crucial for nuclear transmutation studies. However, the particle and heavy ion transport code system (PHITS) severely overshoots the inclusive one-nucleon knockout cross sections sigma_-1N. Therefore development of a reaction model for describing the inclusive one-nucleon knockout processes is necessary. A key is specification of the position and the momentum of a nucleon inside a nucleus to be struck by the incident nucleon. In this paper the semiclassical distorted wave model incorporating the Wigner transform of the one-body nuclear density matrix is applied to the calculation of excitation energy distributions of reaction residues. Decay of a residue is described by introducing a threshold parameter for the minimum excitation energy of it. With reasonable values of the parameter, the measured sigma_-1N for several LLFPs are reproduced by the proposed reaction model. The incident energy dependence of sigma_-1N is found to be governed by that of the nucleon-nucleon cross sections at energies higher than about 75 MeV. At low energies, the nuclear absorption and the Coulomb penetrability also become important. The energy dependence of neutron-induced sigma_-1N is predicted and found to be quite different from that of proton induced one. The proposed reaction model is shown to be promising in discussing the energy dependence of nucleon-induced inclusive one-nucleon knockout processes. The energy dependence of the measured sigma_-1p for 107Pd above 100 MeV is, however, not explained by the present calculation.
A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These
We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocali
First experimental evidence of the population of the first 2- state in 16C above the neutron threshold is obtained by neutron knockout from 17C on a hydrogen target. The invariant mass method combined with in-beam gamma-ray detection is used to locat
We investigate the sensitivity of the non-exclusive nucleon induced deuteron breakup reaction to the three-nucleon interaction and distributions of three-nucleon force effects in inclusive spectra. To this end we solve the three-nucleon Faddeev equat
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o