ترغب بنشر مسار تعليمي؟ اضغط هنا

D2.1 Models for energy consumption of data structures and algorithms

101   0   0.0 ( 0 )
 نشر من قبل Vi Tran
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This deliverable reports our early energy models for data structures and algorithms based on both micro-benchmarks and concurrent algorithms. It reports the early results of Task 2.1 on investigating and modeling the trade-off between energy and performance in concurrent data structures and algorithms, which forms the basis for the whole work package 2 (WP2). The work has been conducted on the two main EXCESS platforms: (1) Intel platform with recent Intel multi-core CPUs and (2) Movidius embedded platform.



قيم البحث

اقرأ أيضاً

This deliverable reports the results of the power models, energy models and libraries for energy-efficient concurrent data structures and algorithms as available by project month 30 of Work Package 2 (WP2). It reports i) the latest results of Task 2. 2-2.4 on providing programming abstractions and libraries for developing energy-efficient data structures and algorithms and ii) the improved results of Task 2.1 on investigating and modeling the trade-off between energy and performance of concurrent data structures and algorithms. The work has been conducted on two main EXCESS platforms: Intel platforms with recent Intel multicore CPUs and Movidius Myriad platforms.
In this paper we present two analytical frameworks for calculating the performance of lock-free data structures. Lock-free data structures are based on retry loops and are called by application-specific routines. In contrast to previous work, we cons ider in this paper lock-free data structures in dynamic environments. The size of each of the retry loops, and the size of the application routines invoked in between, are not constant but may change dynamically. The new frameworks follow two different approaches. The first framework, the simplest one, is based on queuing theory. It introduces an average-based approach that facilitates a more coarse-grained analysis, with the benefit of being ignorant of size distributions. Because of this independence from the distribution nature it covers a set of complicated designs. The second approach, instantiated with an exponential distribution for the size of the application routines, uses Markov chains, and is tighter because it constructs stochastically the execution, step by step. Both frameworks provide a performance estimate which is close to what we observe in practice. We have validated our analysis on (i) several fundamental lock-free data structures such as stacks, queues, deques and counters, some of them employing helping mechanisms, and (ii) synthetic tests covering a wide range of possible lock-free designs. We show the applicability of our results by introducing new back-off mechanisms, tested in application contexts, and by designing an efficient memory management scheme that typical lock-free algorithms can utilize.
The problem of attaining energy efficiency in distributed systems is of importance, but a general, non-domain-specific theory of energy-minimal scheduling is far from developed. In this paper, we classify the problems of energy-minimal scheduling and present theoretical foundations of the same. We derive results concerning energy-minimal scheduling of independent jobs in a distributed system with functionally similar machines with different working and idle power ratings. The machines considered in our system can have identical as well as different speeds. If the jobs can be divided into arbitrary parts, we show that the minimum-energy schedule can be generated in linear time and give exact scheduling algorithms. For the cases where jobs are non-divisible, we prove that the scheduling problems are NP-hard and also give approximation algorithms for the same along with their bounds.
We define a new set of primitive operations that greatly simplify the implementation of non-blocking data structures in asynchronous shared-memory systems. The new operations operate on a set of Data-records, each of which contains multiple fields. T he operations are generalizations of the well-known load-link (LL) and store-conditional (SC) operations called LLX and SCX. The LLX operation takes a snapshot of one Data-record. An SCX operation by a process $p$ succeeds only if no Data-record in a specified set has been changed since $p$ last performed an LLX on it. If successful, the SCX atomically updates one specific field of a Data-record in the set and prevents any future changes to some specified subset of those Data-records. We provide a provably correct implementation of these new primitives from single-word compare-and-swap. As a simple example, we show how to implement a non-blocking multiset data structure in a straightforward way using LLX and SCX.
We present a fully lock-free variant of the recent Montage system for persistent data structures. Our variant, nbMontage, adds persistence to almost any nonblocking concurrent structure without introducing significant overhead or blocking of any kind . Like its predecessor, nbMontage is buffered durably linearizable: it guarantees that the state recovered in the wake of a crash will represent a consistent prefix of pre-crash execution. Unlike its predecessor, nbMontage ensures wait-free progress of the persistence frontier, thereby bounding the number of recent updates that may be lost on a crash, and allowing a thread to force an update of the frontier (i.e., to perform a sync operation) without the risk of blocking. As an extra benefit, the helping mechanism employed by our wait-free sync significantly reduces its latency. Performance results for nonblocking queues, skip lists, trees, and hash tables rival custom data structures in the literature -- dramatically faster than achieved with prior general-purpose systems, and generally within 50% of equivalent non-persistent structures placed in DRAM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا