ﻻ يوجد ملخص باللغة العربية
Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough ($dot{E}_{kin}$$geq$1% of L$_{bol}$) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. UFOs produce Fe resonant absorption lines measured above $approx$7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z=2.64 QSO MG J0414+0534, and observed it with XMM-Newton for $approx$78 ks.} The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (N$_{H}approx$4$times$10$^{22}$ cm$^{-2}$) and of the presence of an iron emission line (E$approx$6.4 keV, EW$=$95$pm$53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5$sigma$) of an absorption line at E$_{int}approx$9.2 keV (E$_{obs}approx$2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at $v_{out}approx$0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z$geq$1.5. We estimated that the UFO mechanical output is $dot{E}_{kin}$$approx$2.5$L_{bol}$ with $dot{p}_{out}/dot{p}_{rad}approx$17 indicating that it is capable of installing significant feedback between the super-massive black hole (SMBH) and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO.
The discovery of a type I X-ray burst from the faint unidentified transient source IGR J17445-2747 in the Galactic bulge by the JEM-X telescope onboard the INTEGRAL observatory is reported. Type I bursts are believed to be associated with thermonucle
Matter flows in the central regions of quasars during their active phases are probably responsible for the properties of the super-massive black holes and that of the bulges of host galaxies. To understand how this mechanism works, we need to charact
The propeller effect should cut off accretion in fast-spinning neutron star high mass X-ray binaries (HMXBs) at low mass transfer rates. However, accretion continues in some HMXBs at $L_{x} < 10^{34}$ erg s$^{-1}$, as evidenced by continuing pulsatio
In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center (
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day d