ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizations for inner functions in certain function spaces

135   0   0.0 ( 0 )
 نشر من قبل Atte Reijonen
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For $frac12<p<infty$, $0<q<infty$ and a certain two-sided doubling weight $omega$, we characterize those inner functions $Theta$ for which $$|Theta|_{A^{p,q}_omega}^q=int_0^1 left(int_0^{2pi} |Theta(re^{itheta})|^p dthetaright)^{q/p} omega(r),dr<infty.$$ Then we show a modified version of this result for $pge q$. Moreover, two additional characterizations for inner functions whose derivative belongs to the Bergman space $A_omega^{p,p}$ are given.



قيم البحث

اقرأ أيضاً

Let $mathcal{S}$ denote the family of all functions that are analytic and univalent in the unit disk $mathbb{D}:={z: |z|<1}$ and satisfy $f(0)=f^{prime}(0)-1=0$. In the present paper, we consider certain subclasses of univalent functions associated w ith the exponential function, and obtain the sharp upper bounds on the initial coefficients and the difference of initial successive coefficients for functions belonging to these classes.
We give conditions characterizing holomorphic and meromorphic functions in the unit disk of the complex plane in terms of certain weak forms of the maximum principle. Our work is directly inspired by recent results of John Wermer, and by the theory o f the projective hull of a compact subset of complex projective space developed by Reese Harvey and Blaine Lawson.
The Bohr radius for a class $mathcal{G}$ consisting of analytic functions $f(z)=sum_{n=0}^{infty}a_nz^n$ in unit disc $mathbb{D}={zinmathbb{C}:|z|<1}$ is the largest $r^*$ such that every function $f$ in the class $mathcal{G}$ satisfies the inequalit y begin{equation*} dleft(sum_{n=0}^{infty}|a_nz^n|, |f(0)|right) = sum_{n=1}^{infty}|a_nz^n|leq d(f(0), partial f(mathbb{D})) end{equation*} for all $|z|=r leq r^*$, where $d$ is the Euclidean distance. In this paper, our aim is to determine the Bohr radius for the classes of analytic functions $f$ satisfying differential subordination relations $zf(z)/f(z) prec h(z)$ and $f(z)+beta z f(z)+gamma z^2 f(z)prec h(z)$, where $h$ is the Janowski function. Analogous results are obtained for the classes of $alpha$-convex functions and typically real functions, respectively. All obtained results are sharp.
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$, we investigate the distortion theorem and growth theorem. Further, the bounds on initial logarithmic coefficients, inverse coefficient and the second Hankel determinant involving the inverse coefficients are examined.
62 - Meghna Sharma , Sushil Kumar , 2021
In this article, we wish to establish some first order differential subordination relations for certain Carath{e}odory functions with nice geometrical properties. Moreover, several implications are determined so that the normalized analytic function belongs to various subclasses of starlike functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا