ﻻ يوجد ملخص باللغة العربية
The motion of a rolling ball actuated by internal point masses that move inside the balls frame of reference is considered. The equations of motion are derived by applying Euler-Poincares symmetry reduction method in concert with Lagrange-dAlemberts principle, which accounts for the presence of the nonholonomic rolling constraint. As a particular example, we consider the case when the masses move along internal rails, or trajectories, of arbitrary shape and fixed within the balls frame of reference. Our system of equations can treat most possible methods of actuating the rolling ball with internal moving masses encountered in the literature, such as circular motion of the masses mimicking swinging pendula or straight line motion of the masses mimicking magnets sliding inside linear tubes embedded within a solenoid. Moreover, our method can model arbitrary rail shapes and an arbitrary number of rails such as several ellipses and/or figure eights, which may be important for future designs of rolling ball robots. For further analytical study, we also reduce the system to a single differential equation when the motion is planar, that is, considering the motion of the rolling disk actuated by internal point masses, in which case we show that the results obtained from the variational derivation coincide with those obtained from Newtons second law. Finally, the equations of motion are solved numerically, illustrating a wealth of complex behaviors exhibited by the systems dynamics. Our results are relevant to the dynamics of nonholonomic systems containing internal degrees of freedom and to further studies of control of such systems actuated by internal masses.
The controlled motion of a rolling ball actuated by internal point masses that move along arbitrarily-shaped rails fixed within the ball is considered. The controlled equations of motion are solved numerically using a predictor-corrector continuation
The controlled motion of a rolling ball actuated by internal point masses that move along arbitrarily-shaped rails fixed within the ball is considered. Application of the variational Pontryagins minimum principle yields the balls controlled equations
The goal of this paper is to investigate the normal and tangential forces acting at the point of contact between a horizontal surface and a rolling ball actuated by internal point masses moving in the balls frame of reference. The normal force and st
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three peri
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the o