ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Ion Pairing in High Salt Concentration Electrolytes using Classical Molecular Dynamics Simulations and its Implications for Nonaqueous Li-O$_2$ Batteries

67   0   0.0 ( 0 )
 نشر من قبل Venkatasubramanian Viswanathan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A precise understanding of solvation is essential for rational search and design of electrolytes that can meet performance demands in Li-ion and beyond Li-ion batteries. In the context of Li-O$_2$ batteries, ion pairing is decisive in determining battery capacity via the solution mediated discharge mechanism without compromising heavily on electrolyte stability. We argue that models based on coordination numbers of the counterion in the first solvation shell are inadequate at describing the extent of ion pairing, especially at higher salt concentrations, and are often not consistent with experimental observations. In this study, we use classical molecular dynamics simulations for several salt anions (NO$_3^-$, BF$_4^-$, CF$_3$SO$_3^-$, (CF$_3$SO$_2$)$_2$N$^-$) and nonaqueous solvent (DMSO, DME, ACN, THF, DMA) combinations to improve the understanding of ion paring with the help of a new metric of ion-pairing. We proposed a metric that defines the degree of clustering of a cation by its counterions and solvent molecules on a continuous scale, the limits if which are based on a simple and intuitive condition of charge neutrality. Using these metrics, we identify the extent of ion pairing in good agreement with experimental solvation phase diagrams and further discuss its usefulness in understanding commonly employed measures of salt and solvent donicity such as the Gutmann donor number.



قيم البحث

اقرأ أيضاً

Using a new class of (BH4)- substituted argyrodite Li6PS5Z0.83(BH4)0.17, (Z = Cl, I) solid electrolyte, Li-metal solid-state batteries operating at room temperature have been developed. The cells were made by combining the modified argyrodite with an In-Li anode and two types of cathode: an oxide, LixMO2 (M = 1/3Ni, 1/3Mn, 1/3Co; so called NMC) and a titanium disulfide, TiS2. The performance of the cells was evaluated through galvanostatic cycling and Alternating Current AC electrochemical impedance measurements. Reversible capacities were observed for both cathodes for at least tens of cycles. However, the high-voltage oxide cathode cell shows lower reversible capacity and larger fading upon cycling than the sulfide one. The AC impedance measurements revealed an increasing interfacial resistance at the cathode side for the oxide cathode inducing the capacity fading. This resistance was attributed to the intrinsic poor conductivity of NMC and interfacial reactions between the oxide material and the argyrodite electrolyte. On the contrary, the low interfacial resistance of the TiS2 cell during cycling evidences a better chemical compatibility between this active material and substituted argyrodites, allowing full cycling of the cathode material, 240 mAhg-1, for at least 35 cycles with a coulombic efficiency above 97%.
Among the beyond Li-ion battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaque ous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li$^+$ stability in solution, which in turn induces solubility of the intermediate to Li$_2$O$_2$ formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anti-correlated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g. Li-S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation.
We present a DFT study utilizing the Hubbard U correction to probe structural and magnetic disorder in $mathrm{NaO_{2}}$, primary discharge product of Na-O$_2$ batteries. We show that $mathrm{NaO_{2}}$ exhibits a large degree of rotational and magnet ic disorder; a 3-body Ising Model is necessary to capture the subtle interplay of this disorder. MC simulations demonstrate that energetically favorable, FM phases near room temperature consist of alternating bands of orthogonally-oriented $mathrm{O_{2}}$ dimers. We find that bulk structures are insulating, with a subset of FM structures showing a moderate gap ($<2$ eV) in one spin channel.
A new class of high-performance pyrrolidinium cation based ionanofluid electrolytes with higher lithium salt concentration are developed. The electrolytes are formed by dispersing imidazolium ionic liquid functionalized TiO2 nanoparticles in low cond ucting, 0.6 M lithium salt doped N-alkyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI) ionic liquid (IL) hosted electrolyte. Viscosity, ionic conductivity and thermal properties of these electrolytes are compared with well studied 0.2 M salt doped Pyr14TFSI IL-based electrolyte. The highly crystalline 0.6 M lithium salt dissolved IL-based electrolytes gradually become amorphous with the increasing dispersion of surface functionalized nanoparticles within it. The ionic conductivity of the electrolytes shows unusual viscosity decoupled characteristics and at the 5.0 wt% nanoparticle dispersion it attains a maximum value, higher than that of pure IL host. As compared to pure IL-based electrolytes, the ionanofluid electrolyte also possesses a significantly higher value of lithium ion transference number. The Li/LiMn2O4 cell with the best conducting ionanofluid electrolyte delivers a discharge capacity of about 131 mAh g-1 at 25 degree C at a current density of 24 mA g-1, much higher than that obtained in 0.2 M Li salt dissociated Pyr14TFSI electrolyte (87 mAh g-1). Superior interfacial compatibility between ionanofluid electrolyte and electrodes as indicated by the excellent rate performance with outstanding capacity retention of the cell as compared to pure IL-based analogue, further establish great application potentiality of this optimized newly developed electrolyte for safer LMBs.
Aqueous zinc-air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at non-alkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. XRD, SEM, and EDS measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and RRDE measurements elucidate the mechanism of ORR and OER. Our analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn$^{2+}$ chelating and pH buffering properties. We discuss the remaining challenges including the electrochemical stability of the electrolyte components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا