ترغب بنشر مسار تعليمي؟ اضغط هنا

New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-ray Binaries from $Chandra$ HETG X-ray Spectroscopy

57   0   0.0 ( 0 )
 نشر من قبل Panayiotis Tzanavaris
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The narrow, neutral Fe K{alpha} fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using $Chandra$ High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe K{alpha} line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe K{alpha} line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In 2 sources a spherical distribution is viable but with non-solar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe K{alpha} line and found full width half maximum values up to ~5000 km s$^{-1}$. Only in some spectra was the Fe K{alpha} line unresolved by the HETG.



قيم البحث

اقرأ أيضاً

This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar--mass black holes which are the end points of massive star evolution. Studying t hese remnants thus provides clues to understanding the evolutionary processes that lead to their formation. We focus here on the distributions of dynamical masses, space velocities and chemical anomalies of their companion stars. These three observational features provide unique information on the physics of core collapse and supernovae explosions within interacting binary systems. There is suggestive evidence for a gap between ~2-5 Msun in the observed mass distribution. This might be related to the physics of the supernova explosions although selections effects and possible systematics may be important. The difference between neutron star mass measurements in low-mass X-ray binaries (LMXBs) and pulsar masses in high-mass X-ray binaries (HMXBs) reflect their different accretion histories, with the latter presenting values close to birth masses. On the other hand, black holes in LMXBs appear to be limited to <~12 Msun because of strong mass-loss during the wind Wolf-Rayet phase. Detailed studies of a limited sample of black-hole X-ray binaries suggest that the more massive black holes have a lower space velocity, which could be explained if they formed through direct collapse. Conversely, the formation of low-mass black holes through a supernova explosion implies that large escape velocities are possible through ensuing natal and/or Blaauw kicks. Finally, chemical abundance studies of the companion stars in seven X-ray binaries indicate they are metal-rich (all except GRO J1655-40) and possess large peculiar abundances of alpha-elements (Abridged)
The discovery of pulsations in several Ultraluminous X-ray sources (ULXs) demonstrated that a fraction of ULXs are powered by super-Eddington accretion onto neutron stars (NSs). This opened the debate as to what is the NS to black hole (BH) ratio wit hin the ULX population and what physical mechanism allows ULXs to reach luminosities well in excess of their Eddington luminosity: strong magnetic fields or rather strong outflows that collimate the emission towards the observer. To distinguish between supercritically accreting BHs, weakly or strongly magnetised NSs, we study the long-term X-ray spectral evolution of a sample of 17 ULXs, 6 of which are known to host NSs. We combine archival data from chandra, xmm and ustar observatories to sample a wide range of spectral states for each source and track each sources evolution in a hardness-luminosity diagram (HLD). We find NS-ULXs to be among the hardest sources in our sample with highly variable high-energy emission. On this basis, we identify M81 X-6 as a strong NS-ULX candidate, whose variability is shown to be akin to that seen in NGC 1313 X-2. Most softer sources with unknown accretor show the presence of three markedly different spectral states that we interpret invoking changes in the mass-accretion rate and obscuration by the supercritical wind/funnel structure. Finally, we report on a lack of variability at high-energies ($gtrsim$ 10 keV) in NGC 1313 X-1 and Holmberg IX X-1, which we argue may offer means to differentiate BH from NS-ULXs. We argue that the hardest sources in our sample might harbour strongly magnetised NSs, while softer sources may be explained by weakly magnetised NSs or BHs, in which the presence of outflows naturally explains their softer spectra through Compton down-scattering, their spectral transitions and the dilution of the pulsed-emission, should some of these sources contain NSs.
We present the first X-ray study of NGC6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to Lx ~ 1e30 erg/s (0.3-7 keV). We detect 86 sources within 8 arcmin of the cluster center, including 59 inside the half-mass radius. We identify twenty sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy we confirm the nature of one CV. We discover one new, X-ray variable candidate CV with Balmer and HeII emission lines in its optical spectrum; this is the first X-ray--selected CV confirmed in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC6791 are primordial. We compare the X-ray properties of NGC6791 with those of a few old open (NGC6819, M67) and globular clusters (47Tuc, NGC6397). It is puzzling that the number of ABs brighter than 1e30 erg/s normalized by cluster mass is lower in NGC6791 than in M67 by a factor ~3 to 7. CVs, ABs, and sub-subgiants brighter than 1e30 erg/s are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e. X-ray--emitting) binaries.
From hot, tenuous gas dominated by Compton processes, to warm, photoionized emission-line regions, to cold, optically thick fluorescing matter, accreting gas flows in X-ray binaries span a huge portion of the parameter space accessible to astrophysic al plasmas. The coexistence of such diverse states of material within small volumes (10^33-10^36 cm^3) leaves X-ray spectroscopists with a challenging set of problems, since all such matter produces various X-ray spectral signatures when exposed to hard X rays. Emission-line regions in X-ray binaries are characterized by high radiation energy densities, relatively high particle densities, and velocities ~1000 km/s. In this article, we describe some recent efforts to generate detailed X-ray line spectra from models of X-ray binaries, whose aims are to reproduce spectra acquired with the ASCA, Chandra, and XMM-Newton observatories. With emphasis on the global nature of X-ray line emission in these systems, the article includes separate treatments of high-mass and low-mass systems, as well as summaries of continuum spectroscopy
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum (RRC) emission from a broad range of ions and elements. The models explore the importance of excitation processes for these lines including photoionization followed by recombination, radiative excitation by absorption of continuum radiation and inner shell fluorescence. The models show that the relative importance of these processes depends on the conditions in the emitting gas, and that no single emitting component can fit the entire spectrum. In particular, the relative importance of radiative excitation and photoionization/recombination differs according to the element and ion stage emitting the line. This in turn implies a diversity of values for the ionization parameter of the various components of gas responsible for the emission, ranging from log(xi)=1 -- 3. Using this, we obtain an estimate for the total amount of gas responsible for the observed emission. The mass flux through the region included in the HETG extraction region is approximately 0.3 Msun/yr assuming ordered flow at the speed characterizing the line widths. This can be compared with what is known about this object from other techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا