ﻻ يوجد ملخص باللغة العربية
The narrow, neutral Fe K{alpha} fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using $Chandra$ High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe K{alpha} line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe K{alpha} line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In 2 sources a spherical distribution is viable but with non-solar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe K{alpha} line and found full width half maximum values up to ~5000 km s$^{-1}$. Only in some spectra was the Fe K{alpha} line unresolved by the HETG.
This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar--mass black holes which are the end points of massive star evolution. Studying t
The discovery of pulsations in several Ultraluminous X-ray sources (ULXs) demonstrated that a fraction of ULXs are powered by super-Eddington accretion onto neutron stars (NSs). This opened the debate as to what is the NS to black hole (BH) ratio wit
We present the first X-ray study of NGC6791, one of the oldest open clusters known (8 Gyr). Our Chandra observation is aimed at uncovering the population of close interacting binaries down to Lx ~ 1e30 erg/s (0.3-7 keV). We detect 86 sources within 8
From hot, tenuous gas dominated by Compton processes, to warm, photoionized emission-line regions, to cold, optically thick fluorescing matter, accreting gas flows in X-ray binaries span a huge portion of the parameter space accessible to astrophysic
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum