ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybridization-switching induced Mott transition in ABO$_3$ perovskites

46   0   0.0 ( 0 )
 نشر من قبل Arun Paramekanti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the concept of hybridization-switching induced Mott transition which is relevant to a broad class of ABO$_3$ perovskite materials including BiNiO$_3$ and PbCrO$_3$ which feature extended $6s$ orbitals on the A-site cation (Bi or Pb), and A-O covalency induced ligand holes. Using {it ab initio} electronic structure and slave rotor theory calculations, we show that such systems exhibit a breathing phonon driven A-site to oxygen hybridization-wave instability which conspires with strong correlations on the B-site transition metal ion (Ni or Cr) to induce a Mott insulator. These Mott insulators with active A-site orbitals are shown to undergo a pressure induced insulator to metal transition accompanied by a colossal volume collapse due to ligand hybridization switching.

قيم البحث

اقرأ أيضاً

109 - S. Jana , S. K. Panda , D. Phuyal 2018
Tailoring transport properties of strongly correlated electron systems in a controlled fashion counts among the dreams of materials scientists. In copper oxides, varying the carrier concentration is a tool to obtain high-temperature superconducting p hases. In manganites, doping results in exotic physics such as insulator-metal transitions (IMT), colossal magnetoresistance (CMR), orbital- or charge-ordered (CO) or charge-disproportionate (CD) states. In most oxides, antiferromagnetic order and charge-disproportionation are asssociated with insulating behavior. Here we report the realization of a unique physical state that can be induced by Mo doping in LaFeO$_3$: the resulting metallic state is a site-selective Mott insulator where itinerant electrons evolving in low-energy Mo states coexist with localized carriers on the Fe sites. In addition, a local breathing-type lattice distortion induces charge disproportionation on the latter, without destroying the antiferromagnetic order. A state, combining antiferromangetism, metallicity and CD phenomena is rather rare in oxides and may be of utmost significance for future antiferromagnetic memory devices.
While defects such as oxygen vacancies in correlated materials can modify their electronic properties dramatically, understanding the microscopic origin of electronic correlations in materials with defects has been elusive. Lanthanum nickelate with o xygen vacancies, LaNiO$_{3-x}$, exhibits the metal-to-insulator transition as the oxygen vacancy level $x$ increases from the stoichiometric LaNiO$_3$. In particular, LaNiO$_{2.5}$ exhibits a paramagnetic insulating phase, also stabilizing an antiferromagnetic state below $T_Nsimeq152$K. Here, we study the electronic structure and energetics of LaNiO$_{3-x}$ using first-principles. We find that LaNiO$_{2.5}$ stabilizes a vacancy-ordered structure with an insulating ground state and the nature of the insulating phase is a site-selective paramagnetic Mott state as obtained using density functional theory plus dynamical mean field theory (DFT+DMFT). The Ni octahedron site develops a Mott insulating state with strong correlations as the Ni $e_g$ orbital is half-filled while the Ni square-planar site with apical oxygen vacancies becomes a band insulator. Our oxygen vacancy results can not be explained by the pure change of the Ni oxidation state alone within the rigid band shift approximation. Our DFT+DMFT density of states explains that the peak splitting of unoccupied states in LaNiO$_{3-x}$ measured by the experimental X-ray absorption spectra originates from two nonequivalent Ni ions in the vacancy-ordered structure.
We present the observation of an isostructural Mott insulator-metal transition in van-der-Waals honeycomb antiferromagnet V$_{0.9}$PS$_3$ through high-pressure x-ray diffraction and transport measurements. The MPX$_3$ family of magnetic van-der-Waals materials (M denotes a first row transition metal and X either S or Se) are currently the subject of broad and intense attention, but the vanadium compounds have until this point not been studied beyond their basic properties. We observe insulating variable-range-hopping type resistivity in V$_{0.9}$PS$_3$, with a gradual increase in effective dimensionality with increasing pressure, followed by a transition to a metallic resistivity temperature dependence between 112 and 124 kbar. The metallic state additionally shows a low-temperature upturn we tentatively attribute to the Kondo Effect. A gradual structural distortion is seen between 26-80 kbar, but no structural change at higher pressures corresponding to the insulator-metal transition. We conclude that the insulator-metal transition occurs in the absence of any distortions to the lattice - an isostructural Mott transition in a new class of two-dimensional material, and in strong contrast to the behavior of the other MPX$_3$ compounds.
The perovskite oxides are known to be susceptible to structural distortions over a long wavelength when compared to their parent cubic structures. From an ab initio simulation perspective, this requires accurate calculations including many thousands of atoms; a task well beyond the remit of traditional plane wave-based density functional theory (DFT). We suggest that this void can be filled using the methodology implemented in the large-scale DFT code, CONQUEST, using a local pseudoatomic orbital (PAO) basis. Whilst this basis has been tested before for some structural and energetic properties, none have treated the most fundamental quantity to the theory, the charge density $n(mathbf{r})$ itself. An accurate description of $n(mathbf{r})$ is vital to the perovskite oxides due to the crucial role played by short-range restoring forces (characterised by bond covalency) and long range coulomb forces as suggested by the soft-mode theory of Cochran and Anderson. We find that modestly sized basis sets of PAOs can reproduce the plane-wave charge density to a total integrated error of better than 0.5% and provide Bader partitioned ionic charges, volumes and average charge densities to similar degree of accuracy. Further, the multi-mode antiferroelectric distortion of PbZrO$_3$ and its associated energetics are reproduced by better than 99% when compared to plane-waves. This work suggests that electronic structure calculations using efficient and compact basis sets of pseudoatomic orbitals can achieve the same accuracy as high cutoff energy plane-wave calculations. When paired with the CONQUEST code, calculations with high electronic and structural accuracy can now be performed on many thousands of atoms, even on systems as delicate as the perovskite oxides.
260 - Wataru Kobayashi 2021
High-temperature thermopower is interpreted as entropy that a carrier carries. Owing to spin and orbital degrees of freedom, a transition metal perovskite exhibits large thermopower at high temperatures. In this paper, we revisit the high-temperature thermopower in the perovskites to shed light on the degrees of freedom. Thus, we theoretically derive an expression of thermopower in one-dimensional octahedral-MX6-clusters chain using linear-response theory and electronic structure calculation of the chain based on the tight-binding approximation. The derived expression of the thermopower is consistent with the extended Heikes formula and well reproduced experimental data of several perovskite oxides at high temperatures. In this expression, a degeneracy of many electron states in octahedral ligand field (which is characterized by multiplet term) appears instead of the spin and orbital degeneracies. Complementarity in between our expression and the extended Heikes formula is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا