ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive star winds interacting with magnetic fields on various scales

106   0   0.0 ( 0 )
 نشر من قبل Alexandre David-Uraz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. David-Uraz




اسأل ChatGPT حول البحث

One of the defining processes which govern massive star evolution is their continuous mass loss via dense, supersonic line-driven winds. In the case of those OB stars which also host a surface magnetic field, the interaction between that field and the ionized outflow leads to complex circumstellar structures known as magnetospheres. In this contribution, we review recent developments in the field of massive star magnetospheres, including current efforts to characterize the largest magnetosphere surrounding an O star: that of NGC 1624-2. We also discuss the potential of the `analytic dynamical magnetosphere (ADM) model to interpret multi-wavelength observations. Finally, we examine the possible effects of -- heretofore undetected -- small-scale magnetic fields on massive star winds and compare their hypothetical consequences to existing, unexplained observations.

قيم البحث

اقرأ أيضاً

96 - Gregor Rauw 2014
Massive stars feature highly energetic stellar winds that interact whenever two such stars are bound in a binary system. The signatures of these interactions are nowadays found over a wide range of wavelengths, including the radio domain, the optical band, as well as X-rays and even gamma-rays. A proper understanding of these effects is thus important to derive the fundamental parameters of the components of massive binaries from spectroscopic and photometric observations.
The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2---1), h, hh, co and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas ($approx$0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10---80 K. A circumstellar torus with inner radius R$_{in}$ $approx$ 8000 AU and outer radius R$_{out}$ 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass $approx$ 8.5/ sin 2 (i) M$_odot$ . SMA1 is resolved into two clumps, SMA1---NE and SMA1---SE, whose temperatures are $approx$150 K and $approx$25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps.
Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by a dynamo driven by differential rotation when two stars, the more massive one with a degener ate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesize a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.
A key ingredient in the evolution of galaxies is the star formation cycle. Recent progress in the study of magnetic fields is revealing the close connection between star formation and its effect on the small-scale structure in the magnetized interste llar medium (ISM). In this contribution we describe how the modern generation of radio telescopes is being used to probe the physics of the ISM through sensitive multiwavelength surveys of gas and magnetic fields, from the inner star forming disk and outward into the galaxy outskirts where large-scale magnetic fields may also play a key role. We highlight unique pioneering efforts towards performing and scientifically exploiting large-scale surveys of the type that the SKA will undertake routinely. Looking to the future, we describe plans for using the Square Kilometre Array (SKA) and its pathfinders to gain important new insights into the cosmic history of galaxy evolution.
We use three dimensional radiation magneto-hydrodynamic simulations to study the effects of magnetic fields on the energy transport and structure of radiation pressure dominated main sequence massive star envelopes at the region of the iron opacity p eak. We focus on the regime where the local thermal timescale is shorter than the dynamical timescale, corresponding to inefficient convective energy transport. We begin with initially weak magnetic fields relative to the thermal pressure, from 100-1000G in differing geometries. The unstable density inversion amplifies the magnetic field, increasing the magnetic energy density to values close to equipartition with the turbulent kinetic energy density. By providing pressure support, the magnetic fields presence significantly increases the density fluctuations in the turbulent envelope, thereby enhancing the radiative energy transport by allowing photons to diffuse out through low density regions. Magnetic buoyancy brings small scale magnetic fields to the photosphere and increases the vertical energy transport with the energy advection velocity proportional to the Alfven velocity, although in all cases we study photon diffusion still dominates the energy transport. The increased radiative and advective energy transport causes the stellar envelope to shrink by several scale heights. We also find larger turbulent velocity fluctuations compared to the purely hydrodynamic case, reaching $approx$ 100 km/s at the stellar photosphere. The photosphere also shows vertical oscillations with similar averaged velocities and periods of a few hours. The increased turbulent velocity and oscillations will have strong impacts on the line broadening and periodic signals in massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا