ﻻ يوجد ملخص باللغة العربية
Coherence peak effects in a superconductor induced by a thermal spin current are reported. We measured inverse spin Hall effects induced by spin injection from a ferrimagnetic insulator Y$_3$Fe$_5$O$_{12}$ into a superconductor NbN using longitudinal spin Seebeck effects. In the vicinity of the superconducting transition temperature of the NbN, a large enhancement of the spin Seebeck voltage is observed, whose sign is opposite to that for the vortex Nernst effect, but is consistent with a calculation for a coherence peak effect in the superconductor NbN.
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that
By means of spin current, the flow of spin angular momentum, we find a regime of spin treacle in a frustrated magnetic system. To establish its existence, we have performed spin transport measurements in nanometer-scale spin glasses. At temperatures
We report characterization and magnetic studies of mixtures of micrometer-size ribbons of Mn$_{12}$ acetate and micrometer-size particles of YBaCuO superconductor. Extremely narrow zero-field spin-tunneling resonance has been observed in the mixtures
We study the interplay of superconducting and ferromagnetic correlations on charge transport in different geometries with a focus on both a quantum point contact as well as a quantum dot in the even and the odd state with and without spin-active scat
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotrop