ﻻ يوجد ملخص باللغة العربية
This paper contains an overview of background from stable homotopy theory used by Freed--Hopkins in their work on invertible extended topological field theories. We provide a working guide to the stable homotopy category, to the Steenrod algebra and to computations using the Adams spectral sequence. Many examples are worked out in detail to illustrate the techniques.
We survey computations of stable motivic homotopy groups over various fields. The main tools are the motivic Adams spectral sequence, the motivic Adams-Novikov spectral sequence, and the effective slice spectral sequence. We state some projects for future study.
We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a new computational method that yields a streamlined computation of the first 61 stable homotopy groups, and gives new information about the stable homotopy g
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equi
Let $M$ be a topological monoid with homotopy group completion $Omega BM$. Under a strong homotopy commutativity hypothesis on $M$, we show that $pi_k (Omega BM)$ is the quotient of the monoid of free homotopy classes $[S^k, M]$ by its submonoid of n
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi