ترغب بنشر مسار تعليمي؟ اضغط هنا

A non linear estimate on the life span of solutions of the three dimensional Navier-Stokes equations

88   0   0.0 ( 0 )
 نشر من قبل Isabelle Gallagher
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Jean-Yves Chemin




اسأل ChatGPT حول البحث

The purpose of this article is to establish bounds from below for the life span of regular solutions to the incompressible Navier-Stokes system, whichinvolve norms not only of the initial data, but also of nonlinear functions of the initial data. We provide examples showing that those bounds are significant improvements to the one provided by the classical fixed point argument. One of the important ingredients is the use of a scale-invariant energy estimate.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t his problem has at least one helical invariant solution.
229 - Jean-Yves Chemin 2012
We present different classes of initial data to the three-dimensional, incompressible Navier-Stokes equations, which generate a global in time, unique solution though they may be arbitrarily large in the end-point function space in which a fixed-poin t argument may be used to solve the equation locally in time. The main feature of these initial data is an anisotropic distribution of their frequencies. One of those classes is taken from previous papers by two of the authors and collaborators, and another one is new.
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
136 - Thomas Eiter 2020
The asymptotic behavior of weak time-periodic solutions to the Navier-Stokes equations with a drift term in the three-dimensional whole space is investigated. The velocity field is decomposed into a time-independent and a remaining part, and separate asymptotic expansions are derived for both parts and their gradients. One observes that the behavior at spatial infinity is determined by the corresponding Oseen fundamental solutions.
277 - Carlo Morosi 2014
The main result of [C. Morosi and L. Pizzocchero, Nonlinear Analysis, 2012] is presented in a variant, based on a C^infinity formulation of the Cauchy problem; in this approach, the a posteriori analysis of an approximate solution gives a bound on th e Sobolev distance of any order between the exact and the approximate solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا