ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmologically allowed regions for the axion decay constant $F_a$

47   0   0.0 ( 0 )
 نشر من قبل Eisuke Sonomoto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the Peccei-Quinn symmetry is already broken during inflation, the decay constant $F_a$ of the axion can be in a wide region from $10^{11}$ GeV to $10^{18}$ GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value $sim M_{p}$ (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant $F_a$ is reduced to a rather narrow region for a given tensor-to-scalar ratio $r$ when Peccei-Quinn scalar field takes $sim M_{p}$ during inflation. For example, if the ratio $r$ is determined as $r gtrsim 10^{-3}$ in future measurements, we can predict $F_a simeq (0.1-1.4)times 10^{12}$ GeV for domain wall number $N_text{DW}=6$.

قيم البحث

اقرأ أيضاً

Dark matter (DM) with a mass below a few keV must have a phase space distribution that differs substantially from the Standard Model particle thermal phase space: otherwise, it will free stream out of cosmic structures as they form. We observe that f ermionic DM psi in this mass range will have a non-negligible momentum in the early Universe, even in the total absence of thermal kinetic energy. This is because the fermions were inevitably more dense at higher redshifts, and thus experienced Pauli degeneracy pressure. They fill up the lowest-momentum states, such that a typical fermion gains a momentum ~ O(p_F) that can exceed its mass m_psi. We find a simple relation between m_psi, the current fraction f_psi of the cold DM energy density in light fermions, and the redshift at which they were relativistic. Considering the impacts of the transition between nonrelativistic and relativistic behavior as revealed by measurements of DNeff and the matter power spectrum, we derive qualitatively new bounds in the f_psi-m_psi plane. We also improve existing bounds for f_psi = 1 by an order of magnitude to m_psi=2 keV. We remark on implications for direct detection and suggest models of dark sectors that may give rise to cosmologically degenerate fermions.
The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Univers e. The parameters of such a model are constrained by the neutrino oscillation data, direct accelerator searches, big bang nucleosynthesis, and requirement of successful baryogenesis. We show that the combination of all these constraints still leaves an allowed region in the parameter space below the kaon mass. This region can be probed by the further searches of NA62, DUNE, or SHiP experiments.
The sensitivity of polarisation-asymmetry correlation experiments to charged currents of right-handed chirality contributing to allowed $beta$-decay is considered in the most general context possible, independently of any type of approximation nor of any specific model for physics beyond the Standard Model of the electroweak interactions. Results are then particularised to general Left-Right Symmetric Models, and experimental prospects offered by mirror nuclei are assessed explicitly on general grounds. In order of decreasing interest, the cases of $^{17}$F, $^{41}$Sc and $^{25}$Al are the most attractive, providing sensitivities better or comparable to allowed pure Gamow-Teller transitions, with the advantage however, that recoil order corrections are smaller in the case of super-allowed decays.
Existing searches for cosmic axions relics have relied heavily on the axion being non-relativistic and making up dark matter. However, light axions can be copiously produced in the early Universe and remain relativistic today, thereby constituting a Cosmic $textit{axion}$ Background (C$a$B). As prototypical examples of axion sources, we consider thermal production, dark-matter decay, parametric resonance, and topological defect decay. Each of these has a characteristic frequency spectrum that can be searched for in axion direct detection experiments. We focus on the axion-photon coupling and study the sensitivity of current and futu
This paper reports on a cavity haloscope search for dark matter axions in the galactic halo in the mass range $2.81$-$3.31$ ${mu}eV$. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible a xion that solve the strong CP problem of quantum chromodynamics, and marks the first time a haloscope search has been able to search for axions at mode crossings using an alternate cavity configuration. Unprecedented sensitivity in this higher mass range is achieved by deploying an ultra low-noise Josephson parametric amplifier as the first stage signal amplifier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا