ﻻ يوجد ملخص باللغة العربية
An outstanding folklore conjecture asserts that, for any prime $p$, up to isomorphism the projective plane $PG(2,mathbb{F}_p)$ over the field $mathbb{F}_p := mathbb{Z}/pmathbb{Z}$ is the unique projective plane of order $p$. Let $pi$ be any projective plane of order $p$. For any partial linear space ${cal X}$, define the inclusion number $i({cal X},pi)$ to be the number of isomorphic copies of ${cal X}$ in $pi$. In this paper we prove that if ${cal X}$ has at most $log_2 p$ lines, then $i({cal X},pi)$ can be written as an explicit rational linear combination (depending only on ${cal X}$ and $p$) of the coefficients of the complete weight enumerator (c.w.e.) of the $p$-ary code of $pi$. Thus, the c.w.e. of this code carries an enormous amount of structural information about $pi$. In consequence, it is shown that if $p > 2^ 9=512$, and $pi$ has the same c.w.e. as $PG(2,mathbb{F}_p)$, then $pi$ must be isomorphic to $PG(2,mathbb{F}_p)$. Thus, the uniqueness conjecture can be approached via a thorough study of the possible c.w.e. of the codes of putative projective planes of prime order.
In 1972, Tutte posed the $3$-Flow Conjecture: that all $4$-edge-connected graphs have a nowhere zero $3$-flow. This was extended by Jaeger et al.(1992) to allow vertices to have a prescribed, possibly non-zero difference (modulo $3$) between the infl
Label the vertices of the complete graph $K_v$ with the integers ${ 0, 1, ldots, v-1 }$ and define the length of the edge between $x$ and $y$ to be $min( |x-y| , v - |x-y| )$. Let $L$ be a multiset of size $v-1$ with underlying set contained in ${ 1,
We consider a communication network where there exist wiretappers who can access a subset of channels, called a wiretap set, which is chosen from a given collection of wiretap sets. The collection of wiretap sets can be arbitrary. Secure network codi
We prove that, for every theory $T$ which is given by an ${mathcal L}_{omega_1,omega}$ sentence, $T$ has less than $2^{aleph_0}$ many countable models if and only if we have that, for every $Xin 2^omega$ on a cone of Turing degrees, every $X$-hyperar
This paper studies the problem of upper bounding the number of independent sets in a graph, expressed in terms of its degree distribution. For bipartite regular graphs, Kahn (2001) established a tight upper bound using an information-theoretic approa