ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic reconnection at the earliest stage of solar flux emergence

120   0   0.0 ( 0 )
 نشر من قبل Hui Tian
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hours. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of $sim$10$^{16}$ Mx~s$^{-1}$. The emergence of magnetic fluxes and interactions between different polarities lead to frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 AA{} images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to enhancement of the magnetic fields and thus formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue and red shifts of $sim$100~km~s$^{-1}$ at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of $sim$10$^{15}$ Mx~s$^{-1}$. We also investigate the three-dimensional magnetic field topology through a magneto-hydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of $sim$1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.



قيم البحث

اقرأ أيضاً

In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we stud y the late-stage evolution of the flare dynamics and topology, comparing signatures of reconnection with those expected from the standard solar flare model. Examining previously unpublished EIS data, we present the evolution of non-thermal velocity and temperature within the famous plasma sheet structure, for the first four hours of the flares duration. On even longer time scales, we use Differential Emission Measures and polarization data to study the longevity of the flares plasma sheet and cusp structure, discovering that the plasma sheet is still visible in CoMP linear polarization observations on 2017 September 11, long after its last appearance in EUV. We deduce that magnetic reconnection of some form is still ongoing at this time - 27 hours after flare onset.
Magnetic reconnection, a fundamentally important process in many aspects of astrophysics, is believed to be initiated by the tearing instability of an electric current sheet, a region where magnetic field abruptly changes direction and electric curre nts build up. Recent studies have suggested that the amount of magnetic shear in these structures is a critical parameter for the switch-on nature of magnetic reconnection in the solar atmosphere, at fluid spatial scales much larger than kinetic scales. We present results of simulations of reconnection in 3D current sheets with conditions appropriate to the solar corona. Using high-fidelity simulations, we follow the evolution of the linear and non-linear 3D tearing instability, leading to reconnection. We find that, depending on the parameter space, magnetic shear can play a vital role in the onset of significant energy release and heating via non-linear tearing. Two regimes in our study exist, dependent on whether the current sheet is longer or shorter than the wavelength of the fastest growing parallel mode (in the corresponding infinite system), thus determining whether sub-harmonics are present in the actual system. In one regime, where the fastest growing parallel mode has sub-harmonics, the non-linear interaction of these sub-harmonics and the coalescence of 3D plasmoids dominates the non-linear evolution, with magnetic shear playing only a weak role in the amount of energy released. In the second regime, where the fastest growing parallel mode has no-sub-harmonics, then only strongly sheared current sheets, where oblique mode are strong enough to compete with the dominant parallel mode, show any significant energy release. We expect both regimes to exist on the Sun, and so our results have important consequences for the the question of reconnection onset in different solar physics applications.
Emerging flux regions (EFRs) are known to exhibit various sporadic local heating events in the lower atmosphere. To investigate the characteristics of these events, especially to link the photospheric magnetic fields and atmospheric dynamics, we anal yze Hinode, IRIS, and SDO data of a new EFR in NOAA AR 12401. Out of 151 bright points (BPs) identified in Hinode/SOT Ca images, 29 are overlapped by an SOT/SP scan. Seven BPs in the EFR center possess mixed-polarity magnetic backgrounds in the photosphere. Their IRIS UV spectra (e.g., Si IV 1402.8 A) are strongly enhanced and red- or blue-shifted with tails reaching +/- 150 km/s, which is highly suggestive of bi-directional jets, and each brightening lasts for 10 - 15 minutes leaving flare-like light curves. Most of this group show bald patches, the U-shaped photospheric magnetic loops. Another 10 BPs are found in unipolar regions at the EFR edges. They are generally weaker in UV intensities and exhibit systematic redshifts with Doppler speeds up to 40 km/s, which could exceed the local sound speed in the transition region. Both types of BPs show signs of strong temperature increase in the low chromosphere. These observational results support the physical picture that heating events in the EFR center are due to magnetic reconnection within cancelling undular fields like Ellerman bombs, while the peripheral heating events are due to shocks or strong compressions caused by fast downflows along the overlying arch filament system.
A three-dimensional numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically-dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-Ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, and its rise and decay phases, lasting for some 15-20 min each. Particular attention is devoted to the field-line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears encircling the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong field-concentrations at the surface. They show a twisted, Omega-loop like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus-instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.
145 - J. Q. Sun , X. Cheng , M. D. Ding 2015
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult t o observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $sim$1 to $ge$5 MK. Shortly afterwards, warm flare loops ($sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a 3D configuration and reveal its origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا