ﻻ يوجد ملخص باللغة العربية
The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.
The Doppler shift of the quasiparticle dispersion by charge currents is responsible for the critical supercurrents in superconductors and instabilities of the magnetic ground state of metallic ferromagnets. Here we predict an analogous effect in thin
Two-dimensional magnetic insulators can be promising hosts for topological magnons. In this study, we show that ABC-stacked honeycomb lattice multilayers with alternating Dzyaloshinskii-Moriya interaction (DMI) reveal a rich topological magnon phase
We address the theory of magnon-phonon interactions and compute the corresponding quasi-particle and transport lifetimes in magnetic insulators with focus on yttrium iron garnet at intermediate temperatures from anisotropy- and exchange-mediated magn
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
We study the magnon contribution to the gravitomagnetoelectric (gravito-ME) effect, in which the magnetization is induced by a temperature gradient, in noncentrosymmetric antiferromagnetic insulators. This phenomenon is totally different from the ME