ﻻ يوجد ملخص باللغة العربية
In Montero-Dorta et al. 2017, we show that luminous red galaxies (LRGs) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at $zsim0.55$ can be divided into two groups based on their star formation histories. So-called fast-growing LRGs assemble $80%$ of their stellar mass at $zsim5$, whereas slow-growing LRGs reach the same evolutionary state at $zsim1.5$. We further demonstrate that these two subpopulations present significantly different clustering properties on scales of $sim1 - 30 mathrm{Mpc}$. Here, we measure the mean halo mass of each subsample using the galaxy-galaxy lensing technique, in the $sim190deg^2$ overlap of the LRG catalogue and the CS82 and CFHTLenS shear catalogues. We show that fast- and slow-growing LRGs have similar lensing profiles, which implies that they live in haloes of similar mass: $logleft(M_{rm halo}^{rm fast}/h^{-1}mathrm{M}_{odot}right) = 12.85^{+0.16}_{-0.26}$ and $logleft(M_{rm halo}^{rm slow}/h^{-1}mathrm{M}_{odot}right) =12.92^{+0.16}_{-0.22}$. This result, combined with the clustering difference, suggests the existence of galaxy assembly bias, although the effect is too subtle to be definitively proven given the errors on our current weak-lensing measurement. We show that this can soon be achieved with upcoming surveys like DES.
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS sur
Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexio
We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constra
We demonstrate the possibility of detecting tidal stripping of dark matter subhalos within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape
In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL) convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this, we use a large suite of cosmological ray-tracing N-body simulat