ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of $hat{q}$ in RHI collisions using di-hadron correlations

121   0   0.0 ( 0 )
 نشر من قبل Michael J. Tannenbaum
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف M. J. Tannenbaum




اسأل ChatGPT حول البحث

In the BDMPSZ model, the energy loss of an outgoing parton in a medium $-dE/dx$ is the transport coefficient $hat{q}$ times $L$ the length traveled. This results in jet quenching, which is well established. However BDMPSZ also predicts an azimuthal broadening of di-jets also proportional to $hat{q}L$ which has so far not been observed. The broadening should produce a larger $k_T$ in A$+$A than in p$+$p collisions. This presentation introduces the observation that the $k_T$ measured in p$+$p collisions for di-hadrons with $p_{Tt}$ and $p_{Ta}$ must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the $k_T$ measured with the same di-hadron $p_{Tt}$ and $p_{Ta}$ in A$+$A collisions. This idea is applied to a recent STAR di-hadron measurement in Au$+$Au at $sqrt{s_{NN}}$=200 GeV, [Phys. Lett. B760 (2016) 689], with result $<{hat{q}L}>=2.1pm 0.6$ GeV$^2$. This is more precise but in agreement with a theoretical calculation of $<{hat{q}L}>=14^{+42}_{-14}$ GeV$^2$ using the same data. Assuming a length $<{L}>approx 7$ fm for central Au$+$Au collisions the present result gives $hat{q}approx 0.30pm 0.09$ GeV$^2$/fm, in fair agreement with the JET collaboration result from single hadron suppression of $hat{q}approx 1.2pm 0.3$ GeV$^2$/fm at an initial time $tau_0=0.6$ fm/c in Au$+$Au collisions at $sqrt{s_{NN}}=200$ GeV. There are several interesting details to be discussed: for a given $p_{Tt}$ the $<{hat{q}L}>$ seems to decrease then vanish with increasing $p_{Ta}$; the di-jet spends a much longer time in the medium ($approx 7$ fm/c) then $tau_0=0.6$ fm/c which likely affects the value of $hat{q}$ that would be observed.



قيم البحث

اقرأ أيضاً

Results from Relativistic Heavy Ion Collider Physics in 2018 and plans for the future at Brookhaven National Laboratory are presented.
287 - M. J. Tannenbaum 2017
The azimuthal width of the di-hadron correlations in p$+$p collisons, beyond the fragmentation transverse momentum, $j_T$, is dominated by $k_T$, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The predict ed azimuthal broadening in A$+$A collisions should produce a larger $k_T$ than in p$+$p collisions. The present work introduces the observation that the $k_T$ measured in p$+$p collisions for di-hadrons with $p_{Tt}$ and $p_{Ta}$ must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the $k_T$ measured with the same di-hadron $p_{Tt}$ and $p_{Ta}$ in Au$+$Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result $langle{hat{q}L}rangle=2.1pm 0.6$ GeV$^2$. This is more precise but in agreement with a theoretical calulation of $langle{hat{q}L}rangle=14^{+42}_{-14}$ GeV$^2$ using the same data. Assuming a length $langle{L}rangleapprox 7$ fm for central Au$+$Au collisions the present result gives $hat{q}=0.30pm 0.09$ GeV$^2$/fm, in fair agreement with the JET collaboration result of $hat{q}approx 1.2pm 0.3$ GeV$^2$/fm at initial time $tau_0=0.6$ fm/c in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV.
174 - M. J. Tannenbaum 2018
The renewed interest in analyzing RHIC data on di-hadron correlations as probes of final state transverse momentum broadening as shown at Quark Matter 2018[1] by theoretical calculations[6] compared to experimental measurements[4,5] led me to review the quoted theoretical calculations and experimental measurements because the theoretical calculation[6] does not show the PHENIX measurements[4] as published. The above references were checked and fits were performed to the published measurements[4,7] to determine $hat{q}L$ from the measured azimuthal broadening to compare with the theoretical calculation[6]. The new results will be presented in addition to some corrections to the previous work[3]. The measured values of $hat{q}L$ show the interesting effect of being consistent with zero for larger values of associated $p_{Ta}geq3$ GeV/c which is shown to be related to well known measurements of the ratio of the Au+Au to p+p associated $p_{Ta}$ distributions for a given trigger $p_{Tt}$ called $I_{AA}$[23,25]. Di-jets rather than di-hadrons are proposed as an improved azimuthal broadening measurement to determine $hat{q}L$ and possibly $hat{q}$.
The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enh ancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.
Two-particle azimuthal ($Deltaphi$) and pseudorapidity ($Deltaeta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV and 200~GeV from the STAR expe riment at RHIC are presented. The s correlation is separated into a jet-like component, narrow in both $Deltaphi$ and $Deltaeta$, and the ridge, narrow in $Deltaphi$ but broad in $Deltaeta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV, but is found to be substantially smaller at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV than at $sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ langle N_{mathrm{part}}rangle$). Measurements of the ridge are compared to models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا