ﻻ يوجد ملخص باللغة العربية
Centrality definition in A$+$A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p$+$p collision ($50pm 5%$ for PHENIX at RHIC). In A$+$A collisions where centrality is measured by the number of nucleon collisions, $N_{rm coll}$, or the number of nucleon participants, $N_{rm part}$, or the number of constituent quark participants, $N_{rm qp}$, the error in the efficiency of the primary interaction trigger (Beam-Beam Counters) for a p$+$p collision leads to a correlated systematic uncertainty in $N_{rm part}$, $N_{rm coll}$ or $N_{rm qp}$ which reduces binomially as the A$+$A collisions become more central. If this is not correctly accounted for in projections of A$+$A to p$+$p collisions, then mistaken conclusions can result. A recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant $({dN_{rm ch}/deta})/{N_{rm qp}}$ in Au$+$Au at RHIC was the same as the value in p$+$p collisions.
The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02 TeV. A two-component model approach has been
The production at central rapidity of K0s, Lambda, Xi and Omega particles in Pb-Pb collisions at 158 A GeV/c has been measured by the NA57 experiment over a centrality range corresponding to the most central 53% of the inelastic Pb-Pb cross section.
We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$,$<$,1) in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{200,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yi
In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of level density and gamma-ray transmission coefficient from a set of particle-gamma coincidence data. Possible errors and uncertainties have been investigated.
We study the recent PHOBOS data on the pseudorapidity density of inclusive charged particles in centrality-binned d+Au collisions at sqrt(s_NN) = 200 GeV. It appears that one can understand the increasing forward-backward asymmetry in the data by ass