ترغب بنشر مسار تعليمي؟ اضغط هنا

G331.512-0.103: An Interstellar Laboratory for Molecular Synthesis I. The Ortho-to-para Ratios for CH$_3$OH and CH$_3$CN

450   0   0.0 ( 0 )
 نشر من قبل Edgar Mendoza
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectral line surveys reveal rich molecular reservoirs in G331.512-0.103, a compact radio source in the center of an energetic molecular outflow. In this first work, we analyse the physical conditions of the source by means of CH$_3$OH and CH$_3$CN. The observations were performed with the APEX telescope. Six different system configurations were defined to cover most of the band within (292-356) GHz; as a consequence we detected a forest of lines towards the central core. A total of 70 lines of $A/E$-CH$_3$OH and $A/E$-CH$_3$CN were analysed, including torsionally excited transitions of CH$_3$OH ($ u_t$=1). In a search for all the isotopologues, we identified transitions of $^{13}$CH$_3$OH. The physical conditions were derived considering collisional and radiative processes. We found common temperatures for each $A$ and $E$ symmetry of CH$_3$OH and CH$_3$CN; the derived column densities indicate an $A/E$ equilibrated ratio for both tracers. The results reveal that CH$_3$CN and CH$_3$OH trace a hot and cold component with $T_k sim$ 141 K and $T_k sim$ 74 K, respectively. In agreement with previous ALMA observations, the models show that the emission region is compact ($lesssim$ 5.5 arcsec) with gas density $n$(H$_2$)=(0.7-1) $times$ 10$^7$ cm$^{-3}$. The CH$_3$OH/CH$_3$CN abundance ratio and the evidences for pre-biotic and complex organic molecules suggest a rich and active chemistry towards G331.512-0.103.



قيم البحث

اقرأ أيضاً

73 - B. Muller 2021
Context. The molecular composition of interstellar ice mantles is defined by gas-grain processes in molecular clouds, with the main components being $H_2O$, $CO$, and $CO_2$. $CH_3OH$ ice is detected towards the denser regions, where large amounts of $CO$ freeze out and get hydrogenated. Heating from nearby protostars can further change the ice structure and composition. Despite the several observations of icy features towards molecular clouds and along the line of site of protostars, it is not yet clear if interstellar ices are mixed or if they have a layered structure. Aims. We aim to examine the effect of mixed and layered ice growth in ice mantle analogues, with focus on the position and shape of methanol infrared bands, so future observations could shed light on the structure of interstellar ices in different environments. Methods. Mixed and layered ice samples were deposited on a cold substrate kept at T = 10 K using a closed-cycle cryostat placed in a vacuum chamber. The spectroscopic features were analysed by FTIR spectroscopy. Different proportions of the most abundant four molecules in ice mantles, namely $H_2O$, $CO$, $CO_2$, and $CH_3OH$, were investigated, with special attention on the analysis of the $CH_3OH$ bands. Results. We measure changes in the position and shape of the CH and CO stretching bands of $CH_3OH$ depending on the mixed or layered nature of the ice sample. Spectroscopic features of methanol are also found to change due to heating. Conclusions. A layered ice structure best reproduces the $CH_3OH$ band position recently observed towards a pre-stellar core and in star-forming regions. Based on our experimental results, we conclude that observations of $CH_3OH$ ices can provide information about the structure of interstellar ices, and we expect JWST to put stringent constraints on the layered or mixed nature of ices in different interstellar environments.
The torsional Raman spectra of two astrophysically detected isotopologues of dimethyl-ether, ($^{12}$CH$_3$O$^{12}$CH$_3$ and $^{13}$CH$_3$O$^{12}$CH$_3$), have been recorded at room temperature and cooled in supersonic jet, and interpreted with the help of highly correlated ab initio calculations. Dimethyl-ether displays excited torsional and vibrational levels at low energy that can be populated at the temperatures of the star forming regions, obliging to extend the analysis of the rotational spectrum over the ground state. Its spectrum in the THz region is rather complex due to the coupling of the torsional overtones $2 u_{11}$ and $2 u_{15}$ with the COC bending mode, and the presence of many hot bands. The torsional overtones are set here at $2 u_{11}=385.2$~cm$^{-1}$ and $2 u_{15}=482.0$~cm$^{-1}$ for $^{12}$CH$_3$O$^{12}$CH$_3$, and $2 u_{11}=385.0$~cm$^{-1}$ and $2 u_{15}=481.1$~cm$^{-1}$ for $^{13}$CH$_3$O$^{12}$CH$_3$. The new assignment of $2 u_{11}$ is downshifted around $sim 10$~cm$^{-1}$ with respect to the literature. All the other (hot) bands have been re-assigned consistently. In addition, the infrared-forbidden torsional fundamental band $ u_{11}$ is observed here at 197.8~cm$^{-1}$. The new spectral characterization in the THz region reported here provides improved values of the Hamiltonian parameters, to be used in the analysis of the rotational spectra of DME isotopologues for further astrophysical detections.
We present a (sub)millimeter line survey of the methanol maser outflow located in the massive star-forming region DR21(OH) carried out with the Submillimeter Array (SMA) at 217/227 GHz and 337/347 GHz. We find transitions from several molecules towar ds the maser outflow such as CH$_3$OH, H$_2$CS, C$^{17}$O, H$^{13}$CO$^+$ and C$^{34}$S. However, with the present observations, we cannot discard the possibility that some of the observed species such as C$^{17}$O, C$^{34}$S, and H$_2$CS, might be instead associated with the compact and dusty continuum sources located in the MM2 region. Given that most of transitions correspond to methanol lines, we have computed a rotational diagram with CASSIS and a LTE synthetic spectra with XCLASS for the detected methanol lines in order to estimate the rotational temperature and column density in small solid angle of the outflow where enough lines are present. We obtain a rotational temperature of $28pm 2.5$K and a column density of $6.0pm 0.9 times 10^{15}$ cm$^{-2}$. These values are comparable to those column densities/rotational temperatures reported in outflows emanating from low-mass stars. Extreme and moderate physical conditions to excite the maser and thermal emission coexist within the CH$_3$OH flow. Finally, we do not detect any complex molecules associated with the flow, e.g., CH3OCHO, (CH3)2CO, and CH$_3$CH$_2$CN.
The organic-inorganic lead halide perovskites are composed of organic molecules imbedded in an inorganic framework. The compounds with general formula CH$_{3}$NH$_{3}$PbX$_{3}$ (MAPbX$_{2}$) display large photovoltaic efficiencies for halogens $X$=Cl , Br, and I in a wide variety of sample geometries and preparation methods. The organic cation and inorganic framework are bound by hydrogen bonds that tether the molecules to the halide anions, and this has been suggested to be important to the optoelectronic properties. We have studied the effects of this bonding using time-of-flight neutron spectroscopy to measure the molecular dynamics in CH$_3$NH$_3$PbCl$_3$ (MAPbCl$_3$). Low-energy/high-resolution neutron backscattering reveals thermally-activated molecular dynamics with a characteristic temperature of $sim$ 95,K. At this same temperature, higher-energy neutron spectroscopy indicates the presence of an anomalous broadening in energy (reduced lifetime) associated with the molecular vibrations. By contrast, neutron powder diffraction shows that a spatially long-range structural phase transitions occurs at 178,K (cubic $rightarrow$ tetragonal) and 173,K (tetragonal $rightarrow$ orthorhombic). The large difference between these two temperature scales suggests that the molecular and inorganic lattice dynamics in MAPbCl$_3$ are actually decoupled. With the assumption that underlying physical mechanisms do not change with differing halogens in the organic-inorganic perovskites, we speculate that the energy scale most relevant to the photovoltaic properties of the lead-halogen perovskites is set by the lead-halide bond, not by the hydrogen bond.
Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile species such a CH$_3$CN. Recent ALMA detections in protoplanetary disks suggest that these species may be common during planet and comet forma tion, but connecting gas phase measurements to cometary abundances first requires constraints on formation chemistry and distributions of these species. We present here the detection of seven spatially resolved transitions of CH$_3$CN in the protoplanetary disk around the T-Tauri star TW Hya. Using a rotational diagram analysis we find a disk-averaged column density of N$_T$=1.45$^{+0.19}_{-0.15}times10^{12}$ cm$^{-2}$ and a rotational temperature of T$_{rot}$=32.7$^{+3.9}_{-3.4}$ K. A radially resolved rotational diagram shows the rotational temperature to be constant across the disk, suggesting that the CH$_3$CN emission originates from a layer at z/r$sim$0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that grain-surface reactions likely dominate CH$_3$CN formation and that in situ disk chemistry is sufficient to explain the observed CH$_3$CN column density profile without invoking inheritance from the protostellar phase. However, the same model fails to reproduce a Solar System cometary abundance of CH$_3$CN relative to H$_2$O in the midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices occurred in the Solar Nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا