ﻻ يوجد ملخص باللغة العربية
4D CFTs have a scale anomaly characterized by the coefficient $c$, which appears as the coefficient of logarithmic terms in momentum space correlation functions of the energy-momentum tensor. By studying the CFT contribution to 4-point graviton scattering amplitudes in Minkowski space we derive a sum rule for $c$ in terms of $TTmathcal{O}$ OPE coefficients. The sum rule can be thought of as a version of the optical theorem, and its validity depends on the existence of the massless and forward limits of the $langle TTTT rangle$ correlation functions that contribute. The finiteness of these limits is checked explicitly for free scalar, fermion, and vector CFTs. The sum rule gives $c$ as a sum of positive terms, and therefore implies a lower bound on $c$ given any lower bound on $TTmathcal{O}$ OPE coefficients. We compute the coefficients to the sum rule for arbitrary operators of spin 0 and 2, including the energy-momentum tensor.
We study a freely falling graviton propagating in AdS in the context of the D1D5 CFT, where we introduce an interaction by turning on a deformation operator. We start with one left and right moving boson in the CFT. After applying two deformation ope
In this letter, we discuss certain universal predictions of the large charge expansion in conformal field theories with $U(1)$ symmetry, mainly focusing on four-dimensional theories. We show that, while in three dimensions quantum fluctuations are re
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes a
We study graviton-graviton scattering in partial-wave amplitudes after unitarizing their Born terms. In order to apply S-matrix techniques, based on unitarity and analyticity, we introduce an S-matrix free of infrared divergences. This is achieved by
A method to unitarize the scattering amplitude produced by infinite-range forces is developed and applied to Born terms. In order to apply $S$-matrix techniques, based on unitarity and analyticity, we first derive an $S$-matrix free of infrared diver