ﻻ يوجد ملخص باللغة العربية
This note introduces CutLang, a domain specific language that aims to provide a clear, human readable way to define analyses in high energy particle physics (HEP) along with an interpretation framework of that language. A proof of principle (PoP) implementation of the CutLang interpreter, achieved using C++ as a layer over the CERN data analysis framework ROOT, is presently available. This PoP implementation permits writing HEP analyses in an unobfuscated manner, as a set of commands in human readable text files, which are interpreted by the framework at runtime. We describe the main features of CutLang and illustrate its usage with two analysis examples. Initial experience with CutLang has shown that a just-in-time interpretation of a human readable HEP specific language is a practical alternative to analysis writing using compiled languages such as C++.
We present CutLang, an analysis description language and runtime interpreter for high energy collider physics data analyses. An analysis description language is a declerative domain specific language that can express all elements of a data analysis i
The fifth edition of the Computing Applications in Particle Physics school was held on 3-7 February 2020, at Istanbul University, Turkey. This particular edition focused on the processing of simulated data from the Large Hadron Collider collisions us
Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and param
The traditional approach in HEP analysis software is to loop over every event and every object via the ROOT framework. This method follows an imperative paradigm, in which the code is tied to the storage format and steps of execution. A more desirabl
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent syste