ترغب بنشر مسار تعليمي؟ اضغط هنا

BRITE-Constellation reveals evidence for pulsations in the enigmatic binary $eta$ Carinae

67   0   0.0 ( 0 )
 نشر من قبل Noel Richardson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$eta$ Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is contaminated by several sources including the Homunculus nebula and neighboring stars, including the eclipsing binary CPD$-$59$^circ$2628. However, we found two coherent oscillations in the light curve. These may represent pulsations that are not yet understood but we postulate that they are related to tidally excited oscillations of $eta$ Cars primary star, and would be similar to those detected in lower-mass eccentric binaries. In particular, one frequency was previously detected by van Genderen et al. and Sterken et al. through the time period of 1974 to 1995 through timing measurements of photometric maxima. Thus, this frequency seems to have been detected for nearly four decades, indicating that it has been stable in frequency over this time span. These pulsations could help provide the first direct constraints on the fundamental parameters of the primary star if confirmed and refined with future observations.



قيم البحث

اقرأ أيضاً

The massive binary system Eta Carinae and the surrounding HII complex, the Carina Nebula, are potential particle acceleration sites from which very-high-energy (VHE; E > 100 GeV) gamma-ray emission could be expected. This paper presents data collecte d during VHE gamma-ray observations with the H.E.S.S. telescope array from 2004 to 2010, which cover a full orbit of Eta Carinae. In the 33.1-hour data set no hint of significant gamma-ray emission from Eta Carinae has been found and an upper limit on the gamma-ray flux of 7.7 x 10-13 ph cm-2 s-1 (99% confidence level) is derived above the energy threshold of 470 GeV. Together with the detection of high-energy (HE; 0.1 GeV > E > 100 GeV) gamma-ray emission by the Fermi-LAT up to 100 GeV, and assuming a continuation of the average HE spectral index into the VHE domain, these results imply a cut-off in the gamma-ray spectrum between the HE and VHE gamma-ray range. This could be caused either by a cut-off in the accelerated particle distribution or by severe gamma-gamma absorption losses in the wind collision region. Furthermore, the search for extended gamma-ray emission from the Carina Nebula resulted in an upper limit on the gamma-ray flux of 4.2 x 10-12 ph cm-2 s-1 (99% confidence level). The derived upper limit of ~23 on the cosmic-ray enhancement factor is compared with results found for the old-age mixed-morphology supernova remnant W 28.
Aims. Eta Cars ultra-violet, optical, and X-ray light curves and its spectrum suggest a physical change in its stellar wind over the last decade. It was proposed that the mass-loss rate decreased by a factor of about 2 in the last 15 years. We comple ment these recent results by investigating the past evolution and the current state of eta Car in the near-infrared (IR). Methods. We present JHKL photometry of eta Car obtained at SAAO Sutherland from 2004-2013 with the Mk II photometer at the 0.75-m telescope and JHKs photometry with SIRIUS at the 1.4-m IRSF telescope from 2012-2013. The near-IR light curves since 1972 are analyzed. Results. The long-term brightening trends in eta Cars JHKL light curves were discontinuous around the 1998 periastron passage. After 1998, the star shows excess emission above the extrapolated trend from earlier dates, foremost in J and H, and the blueward, cyclical progression in its near-IR colors is accelerated. The near-IR color evolution is strongly correlated with the periastron passages. After correcting for the secular trend we find that the color evolution matches an apparent increase in blackbody temperature of an optically thick near-IR emitting plasma component from about 3500 to 6000 K over the last 20 years. Conclusions. We suggest that the changing near-IR emission may be caused by variability in optically thick bremsstrahlung emission. Periastron passages play a key role in the observed excess near-IR emission after 1998 and the long-term color evolution. We thus propose as a hypothesis that angular momentum transfer (via tidal acceleration) during periastron passages leads to sudden changes in eta Cars atmosphere resulting in a long-term decrease in the mass-loss rate.
244 - H. Pablo , M. Shultz , J. Fuller 2019
$varepsilon$ Lupi A is a binary system consisting of two main sequence early B-type stars Aa and Ab in a short period, moderately eccentric orbit. The close binary pair is the only doubly-magnetic massive binary currently known. Using photometric dat a from the BRITE-Constellation we identify a modest heartbeat variation. Combining the photometry with radial velocities of both components we determine a full orbital solution including empirical masses and radii. These results are compared with stellar evolution models as well as interferometry and the differences discussed. We also find additional photometric variability at several frequencies, finding it unlikely these frequencies can be caused by tidally excited oscillations. We do, however, determine that these signals are consistent with gravity mode pulsations typical for slowly pulsating B stars. Finally we discuss how the evolution of this system will be affected by magnetism, determining that tidal interactions will still be dominant.
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design c onsists of three pairs of 7 kg nanosats from Austria, Canada and Poland carrying optical telescopes and CCDs. One instrument in each pair is equipped with a blue filter; the other, a red filter. The first two nanosats are UNIBRITE, designed and built by University of Toronto Institute for Aerospace Studies - Space Flight Laboratory and its twin, BRITE-Austria, built by the Technical University Graz with support of UTIAS-SFL. They were launched on 25 February 2013 by the Indian Space Agency under contract to the Canadian Space Agency into a low-Earth dusk-dawn polar orbit.
We have analyzed high spatial, moderate spectral resolution observations of Eta Carinae obtained with the STIS from 1998.0 to 2004.3. The spectra show prominent P-Cygni lines in H I, Fe II and He I which are complicated by blends and contamination by nebular emission and absorption along the line-of-sight toward the observer. All lines show phase and species dependent variations in emission and absorption. For most of the cycle the He I emission is blueshifted relative to the H I and Fe II P-Cygni emission lines, which are approximately centered at system velocity. The blueshifted He I absorption varies in intensity and velocity throughout the 2024 day period. We construct radial velocity curves for the absorption component of the He I and H I lines. The He I absorption shows significant radial velocity variations throughout the cycle, with a rapid change of over 200 km/s near the 2003.5 event. The H I velocity curve is similar to that of the He I absorption, though offset in phase and reduced in amplitude. We interpret the complex line profile variations in He I, H I and Fe II to be a consequence of the dynamic interaction of the dense wind of Eta Car A with the less dense, faster wind plus the radiation field of a hot companion star, Eta Car B. During most of the orbit, Eta Car B and the He+ recombination zone are on the near side of Eta Car A, producing blueshifted He I emission. He I absorption is formed in the part of the He+ zone that intersects the line-of-sight toward Eta Car. We use the variations seen in He I and the other P-Cygni lines to constrain the geometry of the orbit and the character of Eta Car B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا