ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Evolution of the Gaseous Exoplanetary Debris Around the White Dwarf Star HE 1349--2305

78   0   0.0 ( 0 )
 نشر من قبل Erik Dennihy
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349--2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349--2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.



قيم البحث

اقرأ أيضاً

Optical spectroscopic observations of white dwarf stars selected from catalogs based on the Gaia DR2 database reveal nine new gaseous debris disks that orbit single white dwarf stars, about a factor of two increase over the previously known sample. F or each source we present gas emission lines identified and basic stellar parameters, including abundances for lines seen with low-resolution spectroscopy. Principle discoveries include: (1) the coolest white dwarf (Teff~12,720 K) with a gas disk; this star, WD0145+234, has been reported to have undergone a recent infrared outburst; (2) co-location in velocity space of gaseous emission from multiple elements, suggesting that different elements are well-mixed; (3) highly asymmetric emission structures toward SDSSJ0006+2858, and possibly asymmetric structures for two other systems; (4) an overall sample composed of approximately 25% DB and 75% DA white dwarfs, consistent with the overall distribution of primary atmospheric types found in the field population; and (5) never-before-seen emission lines from Na in the spectra of GaiaJ0611-6931, semi-forbidden Mg, Ca, and Fe lines toward WD0842+572, and Si in both stars. The currently known sample of gaseous debris disk systems is significantly skewed towards northern hemisphere stars, suggesting a dozen or so emission line stars are waiting to be found in the southern hemisphere.
The photospheres of some white dwarfs are polluted by accretion of material from their surrounding planetary debris. White dwarfs with dust disks are often heavily polluted and high-resolution spectroscopic observations of these systems can be used t o infer the chemical compositions of extrasolar planetary material. Here, we report spectroscopic observation and analysis of 19 white dwarfs with dust disks or candidate disks. The overall abundance pattern very much resembles that of bulk Earth and we are starting to build a large enough sample to probe a wide range of planetary compositions. We found evidence for accretion of Fe-rich material onto two white dwarfs as well as O-rich but H-poor planetary debris onto one white dwarf. In addition, there is a spread in Mg/Ca and Si/Ca ratios and it cannot be explained by differential settling or igneous differentiation. The ratios appear to follow an evaporation sequence. In this scenario, we can constrain the mass and number of evaporating bodies surrounding polluted white dwarfs.
Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4min periodic var iation in the strength and shape of the CaII emission line profiles originating from the debris disc around the white dwarf SDSSJ122859.93+104032.9. We interpret this short-period signal as the signature of a solid body held together by its internal strength.
White dwarfs are routinely observed to have polluted atmospheres, and sometimes significant infrared excesses, that indicate ongoing accretion of circumstellar dust and rocky debris. Typically this debris is assumed to be in the form of a (circular) disc, and to originate from asteroids that passed close enough to the white dwarf to be pulled apart by tides. However, theoretical considerations suggest that the circularisation of the debris, which initially occupies highly eccentric orbits, is very slow. We therefore hypothesise that the observations may be readily explained by the debris remaining on highly eccentric orbits, and we explore the properties of such debris. For the generic case of an asteroid originating at several au from the white dwarf, we find that all of the tidal debris is always bound to the white dwarf and that the orbital energy distribution of the debris is narrow enough that it executes similar elliptical orbits with only a narrow spread. Assuming that the tidal field of the white dwarf is sufficient to minimise the effects of self-gravity and collisions within the debris, we estimate the time over which the debris spreads into a single elliptical ring, and we generate toy spectra and lightcurves from the initial disruption to late times when the debris distribution is essentially time steady. Finally we speculate on the connection between these simple considerations and the observed properties of these systems, and on additional physical processes that may change this simple picture.
126 - A. Moor , P. Abraham , A. Kospal 2013
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ~6.0x5.4 arcsec (540x490 AU) and disk inclination of ~25 degree. Assuming the same inclination for the planet candidates orbit, its re-projected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modelling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks co-exist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا