ﻻ يوجد ملخص باللغة العربية
In this paper we revisit two concepts which were originally introduced by Aschbacher and are crucial in the theory of saturated fusion systems: Firstly, we give a new approach to defining the centralizer of a normal subsystem. Secondly, we revisit the construction of the product of two normal subsystems which centralize each other.
Suppose $mathcal{E}$ is a normal subsystem of a saturated fusion system $mathcal{F}$ over $S$. If $Xleq S$ is fully $mathcal{F}$-normalized, then Aschbacher defined a normal subsystem $N_{mathcal{E}}(X)$ of $N_{mathcal{F}}(X)$. In this short note we
The article deals with profinite groups in which the centralizers are pronilpotent (CN-groups). It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CN-group, and let F be the maximal normal pronilpotent subgr
A group $G$ is said to have restricted centralizers if for each $g$ in $G$ the centralizer $C_G(g)$ either is finite or has finite index in $G$. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of pr
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group
The article deals with profinite groups in which centralizers are virtually procyclic. Suppose that G is a profinite group such that the centralizer of every nontrivial element is virtually torsion-free while the centralizer of every element of infin