ﻻ يوجد ملخص باللغة العربية
A total dominator coloring of a graph $G$ is a proper coloring of $G$ in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dominator coloring of it. Here, we study the total dominator coloring on central graphs by giving some tight bounds for the total dominator chromatic number of the central of a graph, join of two graphs and Nordhaus-Gaddum-like relations. Also we will calculate the total dominator chromatic number of the central of a path, a cycle, a wheel, a complete graph and a complete multipartite graph.
A total dominator coloring of a graph G is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dom
Total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of
The total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring
Hadwigers conjecture is one of the most important and long-standing conjectures in graph theory. Reed and Seymour showed in 2004 that Hadwigers conjecture is true for line graphs. We investigate this conjecture on the closely related class of total g
For a given graph $G$, the least integer $kgeq 2$ such that for every Abelian group $mathcal{G}$ of order $k$ there exists a proper edge labeling $f:E(G)rightarrow mathcal{G}$ so that $sum_{xin N(u)}f(xu) eq sum_{xin N(v)}f(xv)$ for each edge $uvin E