ﻻ يوجد ملخص باللغة العربية
We examine the class of initial conditions which give rise to inflation. Our analysis is carried out for several popular models including: Higgs inflation, Starobinsky inflation, chaotic inflation, axion monodromy inflation and non-canonical inflation. In each case we determine the set of initial conditions which give rise to sufficient inflation, with at least $60$ e-foldings. A phase-space analysis has been performed for each of these models and the effect of the initial inflationary energy scale on inflation has been studied numerically. This paper discusses two scenarios of Higgs inflation: (i) the Higgs is coupled to the scalar curvature, (ii) the Higgs Lagrangian contains a non-canonical kinetic term. In both cases we find Higgs inflation to be very robust since it can arise for a large class of initial conditions. One of the central results of our analysis is that, for plateau-like potentials associated with the Higgs and Starobinsky models, inflation can be realised even for initial scalar field values which lie close to the minimum of the potential. This dispels a misconception relating to plateau potentials prevailing in the literature. We also find that inflation in all models is more robust for larger values of the initial energy scale.
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variati
We investigate the thermodynamics of FRW (Friedmann-Robertson-Walker) universe in the extended phase space. We generalize the unified first law with a cosmological constant $Lambda$ by using the Misner-Sharp energy. We treat the cosmological constant
In this paper, we study the thermodynamics especially the $P$-$V$ criticality of the Friedmann-Robertson-Walker (FRW) universe in the novel 4-dimensional Gauss-Bonnet gravity, where we define the thermodynamic pressure $P$ from the cosmological const
We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point m
We present numerical relativity simulations of cosmological scenarios in which the universe is smoothed and flattened by undergoing a phase of slow contraction and test their sensitivity to a wide range of initial conditions. Our numerical scheme ena